We propose an inexact affine scaling Levenberg-Marquardt method for solving bound-constrained semismooth equations under the local error bound assumption which is much weaker than the standard nonsingularity condition...We propose an inexact affine scaling Levenberg-Marquardt method for solving bound-constrained semismooth equations under the local error bound assumption which is much weaker than the standard nonsingularity condition. The affine scaling Levenberg-Marquardt equation is based on a minimization of the squared Euclidean norm of linearized model adding a quadratic affine scaling matrix to find a solution which belongs to the bounded constraints on variable. The global convergence and the superlinear convergence rate are proved.Numerical results show that the new algorithm is efficient.展开更多
The uncertainty of observers' positions can lead to significantly degrading in source localization accuracy. This pa-per proposes a method of using self-location for calibrating the positions of observer stations in ...The uncertainty of observers' positions can lead to significantly degrading in source localization accuracy. This pa-per proposes a method of using self-location for calibrating the positions of observer stations in source localization to reduce the errors of the observer positions and improve the accuracy of the source localization. The relative distance measurements of the two coordinative observers are used for the linear minimum mean square error (LMMSE) estimator. The results of computer si-mulations prove the feasibility and effectiveness of the proposed method. With the general estimation errors of observers' positions, the MSE of the source localization with self-location calibration, which is significantly lower than that without self-location calibra-tion, is approximating to the Cramer-Rao lower bound (CRLB).展开更多
In this paper, a projected gradient trust region algorithm for solving nonlinear equality systems with convex constraints is considered. The global convergence results are developed in a very general setting of comput...In this paper, a projected gradient trust region algorithm for solving nonlinear equality systems with convex constraints is considered. The global convergence results are developed in a very general setting of computing trial directions by this method combining with the line search technique. Close to the solution set this method is locally Q-superlinearly convergent under an error bound assumption which is much weaker than the standard nonsingularity condition.展开更多
基金Supported by National Natural Science Foundation of China(No.11571074)Scientific Research Fund of Hunan Provincial Education Department(No.18A351,17C0393)Natural Science Foundation of Hunan Province(No.2019JJ50105)
文摘We propose an inexact affine scaling Levenberg-Marquardt method for solving bound-constrained semismooth equations under the local error bound assumption which is much weaker than the standard nonsingularity condition. The affine scaling Levenberg-Marquardt equation is based on a minimization of the squared Euclidean norm of linearized model adding a quadratic affine scaling matrix to find a solution which belongs to the bounded constraints on variable. The global convergence and the superlinear convergence rate are proved.Numerical results show that the new algorithm is efficient.
基金supported by the Fundamental Research Funds for the Central Universities(ZYGX2009J016)
文摘The uncertainty of observers' positions can lead to significantly degrading in source localization accuracy. This pa-per proposes a method of using self-location for calibrating the positions of observer stations in source localization to reduce the errors of the observer positions and improve the accuracy of the source localization. The relative distance measurements of the two coordinative observers are used for the linear minimum mean square error (LMMSE) estimator. The results of computer si-mulations prove the feasibility and effectiveness of the proposed method. With the general estimation errors of observers' positions, the MSE of the source localization with self-location calibration, which is significantly lower than that without self-location calibra-tion, is approximating to the Cramer-Rao lower bound (CRLB).
基金Supported by the National Natural Science Foundation of China (10871130)the Research Fund for the Doctoral Program of Higher Education of China (20093127110005)the Scientific Computing Key Laboratory of Shanghai Universities
文摘In this paper, a projected gradient trust region algorithm for solving nonlinear equality systems with convex constraints is considered. The global convergence results are developed in a very general setting of computing trial directions by this method combining with the line search technique. Close to the solution set this method is locally Q-superlinearly convergent under an error bound assumption which is much weaker than the standard nonsingularity condition.