期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
融合手势全局运动和手指局部运动的动态手势识别
被引量:
7
1
作者
缪永伟
李佳颖
孙树森
《计算机辅助设计与图形学学报》
EI
CSCD
北大核心
2020年第9期1492-1501,共10页
传统基于手部轮廓或手部运动轨迹的动态手势识别方法,其提取的特征通常难以准确表示动态手势之间的区别.针对动态手势的复杂时序、空间可变性、特征表示不准确等问题,提出一种融合手势全局运动和手指局部运动的手势识别方法.首先进行动...
传统基于手部轮廓或手部运动轨迹的动态手势识别方法,其提取的特征通常难以准确表示动态手势之间的区别.针对动态手势的复杂时序、空间可变性、特征表示不准确等问题,提出一种融合手势全局运动和手指局部运动的手势识别方法.首先进行动态手势数据预处理,包括去除手势无效帧、手势帧数据补全和关节长度归一化;然后根据给定的手部关节坐标,利用手势距离函数分段提取动态手势关键帧,并基于手势关键帧提取手在空间中的全局运动特征和手内部手指的局部运动特征;其次融合手势全局运动和手指局部运动的关键帧手势特征,并采用线性判别分析进行特征降维;最后利用带高斯核的支持向量机实现动态手势识别与分类.对DHG-14/28动态手势数据集中14类手势和28类手势数据集进行实验,其分类识别准确率分别为98.57%和88.29%,比现有方法分别提高11.27%和4.89%.实验结果表明,该方法能准确地表征动态手势并进行手势识别.
展开更多
关键词
动态手势识别
手势全局运动
手指局部运动
关键帧
线性判别分析
支持向量机
下载PDF
职称材料
题名
融合手势全局运动和手指局部运动的动态手势识别
被引量:
7
1
作者
缪永伟
李佳颖
孙树森
机构
浙江理工大学信息学院
出处
《计算机辅助设计与图形学学报》
EI
CSCD
北大核心
2020年第9期1492-1501,共10页
基金
国家自然科学基金(61972458)
浙江理工大学科研基金(17032001-Y).
文摘
传统基于手部轮廓或手部运动轨迹的动态手势识别方法,其提取的特征通常难以准确表示动态手势之间的区别.针对动态手势的复杂时序、空间可变性、特征表示不准确等问题,提出一种融合手势全局运动和手指局部运动的手势识别方法.首先进行动态手势数据预处理,包括去除手势无效帧、手势帧数据补全和关节长度归一化;然后根据给定的手部关节坐标,利用手势距离函数分段提取动态手势关键帧,并基于手势关键帧提取手在空间中的全局运动特征和手内部手指的局部运动特征;其次融合手势全局运动和手指局部运动的关键帧手势特征,并采用线性判别分析进行特征降维;最后利用带高斯核的支持向量机实现动态手势识别与分类.对DHG-14/28动态手势数据集中14类手势和28类手势数据集进行实验,其分类识别准确率分别为98.57%和88.29%,比现有方法分别提高11.27%和4.89%.实验结果表明,该方法能准确地表征动态手势并进行手势识别.
关键词
动态手势识别
手势全局运动
手指局部运动
关键帧
线性判别分析
支持向量机
Keywords
dynamic gesture recognition
global gesture
motion
local finger motion
key frame
linear discriminant analysis
support vector machine
分类号
TP391.41 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
融合手势全局运动和手指局部运动的动态手势识别
缪永伟
李佳颖
孙树森
《计算机辅助设计与图形学学报》
EI
CSCD
北大核心
2020
7
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部