Local fluid flow(LFF) at the mesoscopic scale is the main dissipation mechanism of seismic waves in heterogeneous porous media within the seismic frequency band.LFF is easily influenced by the structure and boundary...Local fluid flow(LFF) at the mesoscopic scale is the main dissipation mechanism of seismic waves in heterogeneous porous media within the seismic frequency band.LFF is easily influenced by the structure and boundary conditions of the porous media,which leads to different behaviors of the peak frequency of attenuation.The associated transition frequency can provide detailed information about the trend of LFF;therefore,research on the transition frequency of LFF and its relationship with the peak frequency of the corresponding attenuation(i.e.,inverse of quality factor) facilitates the detailed understanding of the effect of inner structures and boundary conditions in porous media.In this study,we firstly obtain the transition frequency of fluid flux based on Biot's theory of poroelasticity and the fast Fourier transform algorithm in a sample containing one repeating unit cell(RUC).We then analyze changes of these two frequencies in porous media with different porous properties.Finally,we extend our analysis to the influence of the undrained boundary condition on the transition frequency and peak frequency in porous media with multiple RUCs.This setup can facilitate the understanding of the effect from the undrained boundary condition.Results demonstrate that these two frequencies have the same trend at low water saturation,but amplitude variations differ between the frequencies as the amount of saturation increases.However,for cases of high water saturation,both the trend and the amplitude variation of these two frequencies fit well with each other.展开更多
The upward multiphase cross flow and heat transfer in the vertical tube may occur in oil production and chemical facilities. In this study, the local flow patterns of an upward gas-water two phase cross flow in a vert...The upward multiphase cross flow and heat transfer in the vertical tube may occur in oil production and chemical facilities. In this study, the local flow patterns of an upward gas-water two phase cross flow in a vertical tube with a horizontal rod have been investigated with an optical probe and the digital high speed video system. The local flow patterns are defined as the bubble, slug, churn and annular flow patterns. Optical probe signals are ana- lyzed in terms of probability density function, and it is proved that the local flow patterns can be recognized by this method. The transition mechanisms between the different flow patterns have been analyzed and the corresponding transitional models are proposed. Finally, local flow pattern maps of the upward gas-water two-phase flow in the vertical tube with a horizontal rod are constructed.展开更多
Recent studies have shown that the size of microvoids has a significant effect on the void growth rate.The purpose of this paper is to explore whether the void size effect can influence the plastic flow localization i...Recent studies have shown that the size of microvoids has a significant effect on the void growth rate.The purpose of this paper is to explore whether the void size effect can influence the plastic flow localization in ductile materials.We have used the extended Gurson's dilatational plasticity theory,which accounts for the void size effect,to study the plastic flow localization in porous solids with long cylindrical voids.The localization model of Rice is adopted,in which the material inside the band may display a different response from that outside the band at the incipient plastic flow localization.The present study shows that it has little effect on the shear band angle.展开更多
In the process of human behavior recognition, the traditional dense optical flow method has too many pixels and too much overhead, which limits the running speed. This paper proposed a method combing YOLOv3 (You Only ...In the process of human behavior recognition, the traditional dense optical flow method has too many pixels and too much overhead, which limits the running speed. This paper proposed a method combing YOLOv3 (You Only Look Once v3) and local optical flow method. Based on the dense optical flow method, the optical flow modulus of the area where the human target is detected is calculated to reduce the amount of computation and save the cost in terms of time. And then, a threshold value is set to complete the human behavior identification. Through design algorithm, experimental verification and other steps, the walking, running and falling state of human body in real life indoor sports video was identified. Experimental results show that this algorithm is more advantageous for jogging behavior recognition.展开更多
Flow localization, which is an importantmode of deformation in engineering materi-als, has been the interesting subject ofa number of experimental observationsand theoretical investigations in recentyears. However, th...Flow localization, which is an importantmode of deformation in engineering materi-als, has been the interesting subject ofa number of experimental observationsand theoretical investigations in recentyears. However, the basic mechanism ofthe phenomena is not well understood atpresent. In a tensile test, the initiationand growth of a shear band are often simul-taneous. Therefore, it is rather difficult展开更多
Hot compression tests of 2050 Al-Li alloy were performed in the deformation temperature range of 340-500°C and strain rate range of 0.001-10 s-1 to investigate the hot deformation behavior of the alloy.The effect...Hot compression tests of 2050 Al-Li alloy were performed in the deformation temperature range of 340-500°C and strain rate range of 0.001-10 s-1 to investigate the hot deformation behavior of the alloy.The effects of friction and temperature difference on flow stress were analyzed and the flow curves were corrected.Based on the dynamic material model,processing map at a strain of 0.5 was established.The grain structure of the compressed samples was observed using optical microscopy.The results show that friction and temperature variation during the hot compression have significant influences on flow stress.The optimum processing domains are in the temperature range from 370 to 430°C with the strain rate range from 0.01 to 0.001 s-1,and in the temperature range from 440 to 500°C with the strain rate range from 0.3 to 0.01 s-1;the flow instable region is located at high strain rates(3-10 s-1)in the entire temperature range.Dynamic recovery(DRV)and dynamic recrystallization(DRX)are the main deformation mechanisms of the 2050 alloy in the stable domains,whereas the alloy exhibits flow localization in the instable region.展开更多
Railway terminal is an important part of railway network. Transport organization of railway terminal is the key of the railway transport organization. Moreover, the organization of transport work is based on the organ...Railway terminal is an important part of railway network. Transport organization of railway terminal is the key of the railway transport organization. Moreover, the organization of transport work is based on the organization of wagon flows in the railway terminal. Because of the great amounts of equipment and a large number of train operations, the study on railway terminal transport organization is mostly focused on a marshalling station in railway terminal or a part of it. Systematic study taking railway terminal as a whole is very few. In this paper, the organization of wagon flows in a railway terminal is analyzed and a wagon flow model in a railway terminal is established. The main principles of organization of local trains are also presented.展开更多
The drop structure will fail as a result of local scoring downstream.This paper discusses the influence of a drop structures' upstream slope to local scour.Empirical equations of the scour hole were developed by l...The drop structure will fail as a result of local scoring downstream.This paper discusses the influence of a drop structures' upstream slope to local scour.Empirical equations of the scour hole were developed by laboratory experiment,theoretical assumptions,and regression analysis.These equations include the maximum scour depth and length during the scouring period,the maximum equilibrium scour depth and length,and the unit width scour rate.The four channel slopes(0%,2%,4%,and 6%) before the drop structure has been included in the analysis.A series of laboratory experiments were conducted to obtain 48 groups of experiments and 419 scour hole profiles during the scouring period.The material used in the scour section is uniform non-cohesive and with a median diameter of d50 = 0.5 mm.The results have been used to develop empirical equations via regression analysis to determine the coefficients of theoretical equations.The high correlation coefficient indicates that the equations developed in this study are suitable for verifying the characteristics of a scour hole at drop structure in the sloped channel.The semi-empirical equation is more accurate than the empirical equation.Compared to a horizontal channel,a sloped channel tends to cause a greater equilibriummaximum scour length,shorter equilibrium maximum scour depth,and faster unit-wide scour rate.展开更多
This paper is concerned with a new numerical method of two dimensional flow. The governing system of differential equations is transformed into an equivalent system applied over a square grid network in order to overc...This paper is concerned with a new numerical method of two dimensional flow. The governing system of differential equations is transformed into an equivalent system applied over a square grid network in order to overcome the difficulties and inaccurancies associated with the determination of characteristics near the flow boundaries. The MacCormack two step explicit scheme with second order accurancy is used for the solution of the transformed system of equations. Comparison between computed and experimental data shows a satisfactory agreement.展开更多
Structural variations(SVs)are a feature of plant genomes that has been largely unexplored despite their significant impact on plant phenotypic traits and local adaptation to abiotic and biotic stress.In this study,we ...Structural variations(SVs)are a feature of plant genomes that has been largely unexplored despite their significant impact on plant phenotypic traits and local adaptation to abiotic and biotic stress.In this study,we employed woolly grape(Vitis retordii),a species native to the tropical and subtropical regions of East Asia with both coastal and inland habitats,as a valuable model for examining the impact of SVs on local adaptation.We assembled a haplotype-resolved chromosomal reference genome for woolly grape,and conducted population genetic analyses based on whole-genome sequencing(WGS)data from coastal and inland populations.The demographic analyses revealed recent bottlenecks in all populations and asymmetric gene flow from the inland to the coastal population.In total,1,035 genes associated with plant adaptive regulation for salt stress,radiation,and environmental adaptation were detected underlying local selection by SVs and SNPs in the coastal population,of which 37.29% and 65.26% were detected by SVs and SNPs,respectively.Candidate genes such as FSD2,RGA1,and AAP8 associated with salt tolerance were found to be highly differentiated and selected during the process of local adaptation to coastal habitats in SV regions.Our study highlights the importance of SVs in local adaptation;candidate genes related to salt stress and climatic adaptation to tropical and subtropical environments are important genomic resources for future breeding programs of grapevine and its rootstocks.展开更多
基金supported by National Natural Science Foundation of China(Grant No.41374116)the Fundamental Research Funds for Central Universities(Grant No.2014B39014)
文摘Local fluid flow(LFF) at the mesoscopic scale is the main dissipation mechanism of seismic waves in heterogeneous porous media within the seismic frequency band.LFF is easily influenced by the structure and boundary conditions of the porous media,which leads to different behaviors of the peak frequency of attenuation.The associated transition frequency can provide detailed information about the trend of LFF;therefore,research on the transition frequency of LFF and its relationship with the peak frequency of the corresponding attenuation(i.e.,inverse of quality factor) facilitates the detailed understanding of the effect of inner structures and boundary conditions in porous media.In this study,we firstly obtain the transition frequency of fluid flux based on Biot's theory of poroelasticity and the fast Fourier transform algorithm in a sample containing one repeating unit cell(RUC).We then analyze changes of these two frequencies in porous media with different porous properties.Finally,we extend our analysis to the influence of the undrained boundary condition on the transition frequency and peak frequency in porous media with multiple RUCs.This setup can facilitate the understanding of the effect from the undrained boundary condition.Results demonstrate that these two frequencies have the same trend at low water saturation,but amplitude variations differ between the frequencies as the amount of saturation increases.However,for cases of high water saturation,both the trend and the amplitude variation of these two frequencies fit well with each other.
文摘The upward multiphase cross flow and heat transfer in the vertical tube may occur in oil production and chemical facilities. In this study, the local flow patterns of an upward gas-water two phase cross flow in a vertical tube with a horizontal rod have been investigated with an optical probe and the digital high speed video system. The local flow patterns are defined as the bubble, slug, churn and annular flow patterns. Optical probe signals are ana- lyzed in terms of probability density function, and it is proved that the local flow patterns can be recognized by this method. The transition mechanisms between the different flow patterns have been analyzed and the corresponding transitional models are proposed. Finally, local flow pattern maps of the upward gas-water two-phase flow in the vertical tube with a horizontal rod are constructed.
基金The project supported by the National Natural Science Foundation of China (10121202) and Ministry of Education,China (20020003023 and Key Grant Project 0306)
文摘Recent studies have shown that the size of microvoids has a significant effect on the void growth rate.The purpose of this paper is to explore whether the void size effect can influence the plastic flow localization in ductile materials.We have used the extended Gurson's dilatational plasticity theory,which accounts for the void size effect,to study the plastic flow localization in porous solids with long cylindrical voids.The localization model of Rice is adopted,in which the material inside the band may display a different response from that outside the band at the incipient plastic flow localization.The present study shows that it has little effect on the shear band angle.
文摘In the process of human behavior recognition, the traditional dense optical flow method has too many pixels and too much overhead, which limits the running speed. This paper proposed a method combing YOLOv3 (You Only Look Once v3) and local optical flow method. Based on the dense optical flow method, the optical flow modulus of the area where the human target is detected is calculated to reduce the amount of computation and save the cost in terms of time. And then, a threshold value is set to complete the human behavior identification. Through design algorithm, experimental verification and other steps, the walking, running and falling state of human body in real life indoor sports video was identified. Experimental results show that this algorithm is more advantageous for jogging behavior recognition.
文摘Flow localization, which is an importantmode of deformation in engineering materi-als, has been the interesting subject ofa number of experimental observationsand theoretical investigations in recentyears. However, the basic mechanism ofthe phenomena is not well understood atpresent. In a tensile test, the initiationand growth of a shear band are often simul-taneous. Therefore, it is rather difficult
基金Project(2013JSJJ0001)supported by the Teachers’ Research Fund,Central South University,ChinaProject supported by the Nonferrous Metal Oriented Advanced Structural Materials and Manufacturing Cooperative Innovation Center,China
文摘Hot compression tests of 2050 Al-Li alloy were performed in the deformation temperature range of 340-500°C and strain rate range of 0.001-10 s-1 to investigate the hot deformation behavior of the alloy.The effects of friction and temperature difference on flow stress were analyzed and the flow curves were corrected.Based on the dynamic material model,processing map at a strain of 0.5 was established.The grain structure of the compressed samples was observed using optical microscopy.The results show that friction and temperature variation during the hot compression have significant influences on flow stress.The optimum processing domains are in the temperature range from 370 to 430°C with the strain rate range from 0.01 to 0.001 s-1,and in the temperature range from 440 to 500°C with the strain rate range from 0.3 to 0.01 s-1;the flow instable region is located at high strain rates(3-10 s-1)in the entire temperature range.Dynamic recovery(DRV)and dynamic recrystallization(DRX)are the main deformation mechanisms of the 2050 alloy in the stable domains,whereas the alloy exhibits flow localization in the instable region.
文摘Railway terminal is an important part of railway network. Transport organization of railway terminal is the key of the railway transport organization. Moreover, the organization of transport work is based on the organization of wagon flows in the railway terminal. Because of the great amounts of equipment and a large number of train operations, the study on railway terminal transport organization is mostly focused on a marshalling station in railway terminal or a part of it. Systematic study taking railway terminal as a whole is very few. In this paper, the organization of wagon flows in a railway terminal is analyzed and a wagon flow model in a railway terminal is established. The main principles of organization of local trains are also presented.
基金the research support from Ministry of Science and Technology of Chinese Taipei,with the project no.104-2313-B-343-001
文摘The drop structure will fail as a result of local scoring downstream.This paper discusses the influence of a drop structures' upstream slope to local scour.Empirical equations of the scour hole were developed by laboratory experiment,theoretical assumptions,and regression analysis.These equations include the maximum scour depth and length during the scouring period,the maximum equilibrium scour depth and length,and the unit width scour rate.The four channel slopes(0%,2%,4%,and 6%) before the drop structure has been included in the analysis.A series of laboratory experiments were conducted to obtain 48 groups of experiments and 419 scour hole profiles during the scouring period.The material used in the scour section is uniform non-cohesive and with a median diameter of d50 = 0.5 mm.The results have been used to develop empirical equations via regression analysis to determine the coefficients of theoretical equations.The high correlation coefficient indicates that the equations developed in this study are suitable for verifying the characteristics of a scour hole at drop structure in the sloped channel.The semi-empirical equation is more accurate than the empirical equation.Compared to a horizontal channel,a sloped channel tends to cause a greater equilibriummaximum scour length,shorter equilibrium maximum scour depth,and faster unit-wide scour rate.
文摘This paper is concerned with a new numerical method of two dimensional flow. The governing system of differential equations is transformed into an equivalent system applied over a square grid network in order to overcome the difficulties and inaccurancies associated with the determination of characteristics near the flow boundaries. The MacCormack two step explicit scheme with second order accurancy is used for the solution of the transformed system of equations. Comparison between computed and experimental data shows a satisfactory agreement.
基金supported by the Science Fund Program for Distinguished Young Scholars of the National Natural Science Foundation of China(Overseas)to Yongfeng ZhouNational Natural Science Foundation of China(Nos.32300191,32372662)+1 种基金Guangxi University,Bama Institute of Integration of Industry and Education,postgraduate joint training project(Project Nos.20210020,20210039)the National Key Research and Development Program of China(grants 2023YFF1000100 and 2023YFD2200700).
文摘Structural variations(SVs)are a feature of plant genomes that has been largely unexplored despite their significant impact on plant phenotypic traits and local adaptation to abiotic and biotic stress.In this study,we employed woolly grape(Vitis retordii),a species native to the tropical and subtropical regions of East Asia with both coastal and inland habitats,as a valuable model for examining the impact of SVs on local adaptation.We assembled a haplotype-resolved chromosomal reference genome for woolly grape,and conducted population genetic analyses based on whole-genome sequencing(WGS)data from coastal and inland populations.The demographic analyses revealed recent bottlenecks in all populations and asymmetric gene flow from the inland to the coastal population.In total,1,035 genes associated with plant adaptive regulation for salt stress,radiation,and environmental adaptation were detected underlying local selection by SVs and SNPs in the coastal population,of which 37.29% and 65.26% were detected by SVs and SNPs,respectively.Candidate genes such as FSD2,RGA1,and AAP8 associated with salt tolerance were found to be highly differentiated and selected during the process of local adaptation to coastal habitats in SV regions.Our study highlights the importance of SVs in local adaptation;candidate genes related to salt stress and climatic adaptation to tropical and subtropical environments are important genomic resources for future breeding programs of grapevine and its rootstocks.