This paper explores the performances of a finite element simulation including four concrete models applied to a full-scale reinforced concrete beam subjected to blast loading. Field test data has been used to compare ...This paper explores the performances of a finite element simulation including four concrete models applied to a full-scale reinforced concrete beam subjected to blast loading. Field test data has been used to compare model results for each case. The numerical modelling has been, carried out using the suitable code LS-DYNA. This code integrates blast load routine(CONWEP) for the explosive description and four different material models for the concrete including: Karagozian & Case Concrete, Winfrith, Continuous Surface Cap Model and Riedel-Hiermaier-Thoma models, with concrete meshing based on 10, 15, and 20 mm. Six full-scale beams were tested: four of them used for the initial calibration of the numerical model and two more tests at lower scaled distances. For calibration, field data obtained employing pressure and accelerometers transducers were compared with the results derived from the numerical simulation. Damage surfaces and the shape of rupture in the beams have been used as references for comparison. Influence of the meshing on accelerations has been put in evidence and for some models the shape and size of the damage in the beams produced maximum differences around 15%. In all cases, the variations between material and mesh models are shown and discussed.展开更多
In order to provide more insights into the damage propagation composite wind turbine blades(blade)under cyclic fatigue loading,a stiffness degradation model for blade is proposed based on the full-scale fatigue testin...In order to provide more insights into the damage propagation composite wind turbine blades(blade)under cyclic fatigue loading,a stiffness degradation model for blade is proposed based on the full-scale fatigue testing of a blade.A novel non-linear fatigue damage accumulation model is proposed using the damage assessment theories of composite laminates for the first time.Then,a stiffness degradation model is established based on the correlation of fatigue damage and residual stiffness of the composite laminates.Finally,a stiffness degradation model for the blade is presented based on the full-scale fatigue testing.The scientific rationale of the proposed stiffness model of blade is verified by using full-scale fatigue test data of blade with a total length of 52.5 m.The results indicate that the proposed stiffness degradation model of the blade agrees well with the fatigue testing results of this blade.This work provides a basis for evaluating the fatigue damage and lifetime of blade under cyclic fatigue loading.展开更多
Full-scale model tests were carried out on a 30 m span prestressed concrete box girder and a 20 m span prestressed concrete hollow slab. Failure models were prestressed reinforcement tensile failure and crashing of ro...Full-scale model tests were carried out on a 30 m span prestressed concrete box girder and a 20 m span prestressed concrete hollow slab. Failure models were prestressed reinforcement tensile failure and crashing of roof concrete, respectively. The ductility indexes of the box girder and hollow slab were 1.99 and 1.23, respectively, according to the energy viewpoint. Based on the horizontal section hypothesis, the nonlinear computation procedure was established using the limited banding law, and it could carry out the entire performance analysis including the unloading, mainly focusing on the ways to achieve the unloading curves computation through stress-strain, moment-curvature and load-displacement curves. Through the procedure, parameters that influence on the bearing capacity, deformation performance and ductility of the structures were analyzed. Those parameters were quantity of prestressed reinforcement and tension coefficients of prestressed reinforcement. From the analysis, some useful conclusions can be obtained.展开更多
Employing an ideal elasto-plastic model,the typically used strength reduction method reduced the strength of all soil elements of a slope.Therefore,this method was called the global strength reduction method(GSRM).How...Employing an ideal elasto-plastic model,the typically used strength reduction method reduced the strength of all soil elements of a slope.Therefore,this method was called the global strength reduction method(GSRM).However,the deformation field obtained by GSRM could not reflect the real deformation of a slope when the slope became unstable.For most slopes,failure occurs once the strength of some regional soil is sufficiently weakened; thus,the local strength reduction method(LSRM)was proposed to analyze slope stability.In contrast with GSRM,LSRM only reduces the strength of local soil,while the strength of other soil remains unchanged.Therefore,deformation by LSRM is more reasonable than that by GSRM.In addition,the accuracy of the slope's deformation depends on the constitutive model to a large degree,and the variable-modulus elasto-plastic model was thus adopted.This constitutive model was an improvement of the Duncan–Chang model,which modified soil's deformation modulus according to stress level,and it thus better reflected the plastic feature of soil.Most importantly,the parameters of the variable-modulus elasto-plastic model could be determined through in-situ tests,and parameters determination by plate loading test and pressuremeter test were introduced.Therefore,it is easy to put this model into practice.Finally,LSRM and the variable-modulus elasto-plastic model were used to analyze Egongdai ancient landslide.Safety factor,deformation field,and optimal reinforcement measures for Egongdai ancient landslide were obtained based on the proposed method.展开更多
Viscoelastic(VE) dampers, with their stiffness and energy dissipation capabilities, have been widely used in civil engineering for mitigating wind-induced vibration and seismic responses of structures, thus enhancin...Viscoelastic(VE) dampers, with their stiffness and energy dissipation capabilities, have been widely used in civil engineering for mitigating wind-induced vibration and seismic responses of structures, thus enhancing the comfort of residents and serviceability of equipment inside. In past relevant research, most analytical models for characterizing the mechanical behavior of VE dampers were verified by comparing their predictions with performance test results from small-scale specimens, which might not adequately or conservatively represent the actual behavior of full-scale dampers, especially with regard to the ambient temperature, temperature rise, and heat convection effects. Thus, in this study, by using a high-performance testing facility with a temperature control system, full-scale VE dampers were dynamically tested with different displacement amplitudes, excitation frequencies, and ambient temperatures. By comparing the analytical predictions with the experimental results, it is demonstrated that adopting the fractional derivative method together with considering the effects of excitation frequencies, ambient temperatures, temperature rises, softening, and hardening, can reproduce the design performance of full-scale VE dampers very well.展开更多
This paper presents an approach for estimating power of the score test, based on an asymptotic approximation to the power of the score test under contiguous alternatives. The method is applied to the problem of power ...This paper presents an approach for estimating power of the score test, based on an asymptotic approximation to the power of the score test under contiguous alternatives. The method is applied to the problem of power calculations for the score test of heteroscedasticity in European rabbit data (Ratkowsky, 1983). Simulation studies are presented which indicate that the asymptotic approximation to the finite-sample situation is good over a wide range of parameter configurations.展开更多
Varying-coefficient models are a useful extension of classical linear model. They are widely applied to economics, biomedicine, epidemiology, and so on. There are extensive studies on them in the latest three decade y...Varying-coefficient models are a useful extension of classical linear model. They are widely applied to economics, biomedicine, epidemiology, and so on. There are extensive studies on them in the latest three decade years. In this paper, many of models related to varying-coefficient models are gathered up. All kinds of the estimation procedures and theory of hypothesis test on the varying-coefficients model are summarized. Prom my opinion, some aspects waiting to study are proposed.展开更多
In this paper, we propose the test statistic to check whether the nonparametric function in partially linear models is linear or not. We estimate the nonparametric function in alternative by using the local linear met...In this paper, we propose the test statistic to check whether the nonparametric function in partially linear models is linear or not. We estimate the nonparametric function in alternative by using the local linear method, and then estimate the parameters by the two stage method. The test statistic under the null hypothesis is calculated, and it is shown to be asymptotically normal.展开更多
In this paper, we extend the generalized likelihood ratio test to the varying-coefficient models with censored data. We investigate the asymptotic behavior of the proposed test and demonstrate that its limiting null d...In this paper, we extend the generalized likelihood ratio test to the varying-coefficient models with censored data. We investigate the asymptotic behavior of the proposed test and demonstrate that its limiting null distribution follows a distribution, with the scale constant and the number of degree of freedom being independent of nuisance parameters or functions, which is called the wilks phenomenon. Both simulated and real data examples are given to illustrate the performance of the testing approach.展开更多
We propose the test statistic to check whether the nonpararnetric functions in two partially linear models are equality or not in this paper. We estimate the nonparametric function both in null hypothesis and the alte...We propose the test statistic to check whether the nonpararnetric functions in two partially linear models are equality or not in this paper. We estimate the nonparametric function both in null hypothesis and the alternative by the local linear method, where we ignore the parametric components, and then estimate the parameters by the two stage method. The test statistic is derived, and it is shown to be asymptotically normal under the null hypothesis.展开更多
Stress waves propagate along vertical,radial and circumferential directions when a non-uniformly distributed load is applied at one end of a three-dimensional shaft.As a result,the receiving signals are usually mixed ...Stress waves propagate along vertical,radial and circumferential directions when a non-uniformly distributed load is applied at one end of a three-dimensional shaft.As a result,the receiving signals are usually mixed with undesired interference components,often featuring as high-frequency fluctuations.Previous studies have revealed that sectional geometry(shape and size)greatly affects the high-frequency interference.In this study,low strain dynamic testing on full-scale X-section concrete is conducted in order to investigate the influences of high-frequency interference on velocity responses at the pile head.Emphasis is placed on the frequency and peak value of interference waves at various receiving points.Additionally,the effects of the geometrical,and mechanical properties of the pile shaft on high-frequency interference are elaborated on through the three-dimensional finite element method.The results show that the measured wave is obscured by interference waves superposed by two types of high-frequency components.The modulus and cross-sectional area are contributing factors to the frequency and peak value of the interference waves.On the other hand,the position with the least interference is determined,to some extent,by the accurate shape of the X-section.展开更多
One of the key problems in collaborative geometric modeling systems is topological entity correspondence when topolog- ical structure of geometry models on collaborative sites changes, ha this article, we propose a so...One of the key problems in collaborative geometric modeling systems is topological entity correspondence when topolog- ical structure of geometry models on collaborative sites changes, ha this article, we propose a solution for tracking topological entity alterations in 3D collaborative modeling environment. We firstly make a thorough analysis and detailed categorization on the altera- tion properties and causations for each type of topological entity, namely topological face and topological edge. Based on collabora- tive topological entity naming mechanism, a data structure called TEST (Topological Entity Structure Tree) is introduced to track the changing history and current state of each topological entity, to embody the relationship among topological entities. Rules and algo- rithms are presented for identification of topological entities referenced by operations for correct execution and model consistency. The algorithm has been verified within the prototype we have implemented with ACIS.展开更多
With the increasing popularity of high-resolution remote sensing images,the remote sensing image retrieval(RSIR)has always been a topic of major issue.A combined,global non-subsampled shearlet transform(NSST)-domain s...With the increasing popularity of high-resolution remote sensing images,the remote sensing image retrieval(RSIR)has always been a topic of major issue.A combined,global non-subsampled shearlet transform(NSST)-domain statistical features(NSSTds)and local three dimensional local ternary pattern(3D-LTP)features,is proposed for high-resolution remote sensing images.We model the NSST image coefficients of detail subbands using 2-state laplacian mixture(LM)distribution and its three parameters are estimated using Expectation-Maximization(EM)algorithm.We also calculate the statistical parameters such as subband kurtosis and skewness from detail subbands along with mean and standard deviation calculated from approximation subband,and concatenate all of them with the 2-state LM parameters to describe the global features of the image.The various properties of NSST such as multiscale,localization and flexible directional sensitivity make it a suitable choice to provide an effective approximation of an image.In order to extract the dense local features,a new 3D-LTP is proposed where dimension reduction is performed via selection of‘uniform’patterns.The 3D-LTP is calculated from spatial RGB planes of the input image.The proposed inter-channel 3D-LTP not only exploits the local texture information but the color information is captured too.Finally,a fused feature representation(NSSTds-3DLTP)is proposed using new global(NSSTds)and local(3D-LTP)features to enhance the discriminativeness of features.The retrieval performance of proposed NSSTds-3DLTP features are tested on three challenging remote sensing image datasets such as WHU-RS19,Aerial Image Dataset(AID)and PatternNet in terms of mean average precision(MAP),average normalized modified retrieval rank(ANMRR)and precision-recall(P-R)graph.The experimental results are encouraging and the NSSTds-3DLTP features leads to superior retrieval performance compared to many well known existing descriptors such as Gabor RGB,Granulometry,local binary pattern(LBP),Fisher vector(FV),vector of locally aggregated descriptors(VLAD)and median robust extended local binary pattern(MRELBP).For WHU-RS19 dataset,in terms of{MAP,ANMRR},the NSSTds-3DLTP improves upon Gabor RGB,Granulometry,LBP,FV,VLAD and MRELBP descriptors by{41.93%,20.87%},{92.30%,32.68%},{86.14%,31.97%},{18.18%,15.22%},{8.96%,19.60%}and{15.60%,13.26%},respectively.For AID,in terms of{MAP,ANMRR},the NSSTds-3DLTP improves upon Gabor RGB,Granulometry,LBP,FV,VLAD and MRELBP descriptors by{152.60%,22.06%},{226.65%,25.08%},{185.03%,23.33%},{80.06%,12.16%},{50.58%,10.49%}and{62.34%,3.24%},respectively.For PatternNet,the NSSTds-3DLTP respectively improves upon Gabor RGB,Granulometry,LBP,FV,VLAD and MRELBP descriptors by{32.79%,10.34%},{141.30%,24.72%},{17.47%,10.34%},{83.20%,19.07%},{21.56%,3.60%},and{19.30%,0.48%}in terms of{MAP,ANMRR}.The moderate dimensionality of simple NSSTds-3DLTP allows the system to run in real-time.展开更多
In order to predict the lifetime of products appropriately with long lifetime and high reliability,the accelerated degradation testing(ADT)has been proposed.Composite wind turbine blade is one of the most important co...In order to predict the lifetime of products appropriately with long lifetime and high reliability,the accelerated degradation testing(ADT)has been proposed.Composite wind turbine blade is one of the most important components in wind turbine system.Its fatigue cycle is very long in practice.A full-scale fatigue testing is usually used to verify the design of a new blade.In general,the full-scale fatigue testing of blade is accelerated on the basis of the damage equivalent principle.During the full-scale fatigue test ing,blade is subjected to higher testing load than normal operat ing conditions;consequently,the performance degradation of the blade is hastened over time.The full-scale fatigue testing of blade is regarded as a special ADT.According to the fatigue failure criterion,we choose blade stiffness as the characteristic quantity of the blade performance,and propose an accelerated model(AM)for blade on the basis of the theories of ADT.Then,degradation path of the blade stiffness is modeled by using Gamma process.Finally,the lifet ime prediction of full-scale megawatt(MW)blade is conducted by combining the proposed AM and blade stiffness degradation model.The prediction results prove the reasonability and validity of this study.This can supply a new approach to predict the lifetime of the full-scale MW blade.展开更多
In linear regression model, the influence on the regression coefficients has beed paid great attention and other aspects such as the influence on confidence regions have also been studied. However, influence on F-test...In linear regression model, the influence on the regression coefficients has beed paid great attention and other aspects such as the influence on confidence regions have also been studied. However, influence on F-test in linear regression model received few consideration. This paper examines the local influence of small perturbations on Fstatistic. The diagnostic results permit one to check the sensitivity of F-statistic to the exact perturbations of error variance, explanatory variables and response variables. This method is applied to testing problem of transformation parameter in transformation model.Diagnostics are illustrated with two examples and compared with standard method.展开更多
基金This research has been conducted under SEGTRANS project,funded by the Centre for Industrial Technological Development(CDTI,Government of Spain).
文摘This paper explores the performances of a finite element simulation including four concrete models applied to a full-scale reinforced concrete beam subjected to blast loading. Field test data has been used to compare model results for each case. The numerical modelling has been, carried out using the suitable code LS-DYNA. This code integrates blast load routine(CONWEP) for the explosive description and four different material models for the concrete including: Karagozian & Case Concrete, Winfrith, Continuous Surface Cap Model and Riedel-Hiermaier-Thoma models, with concrete meshing based on 10, 15, and 20 mm. Six full-scale beams were tested: four of them used for the initial calibration of the numerical model and two more tests at lower scaled distances. For calibration, field data obtained employing pressure and accelerometers transducers were compared with the results derived from the numerical simulation. Damage surfaces and the shape of rupture in the beams have been used as references for comparison. Influence of the meshing on accelerations has been put in evidence and for some models the shape and size of the damage in the beams produced maximum differences around 15%. In all cases, the variations between material and mesh models are shown and discussed.
基金supported by the Science and Technology Programs of Gansu Province,China(Nos.21JR1RA248,20JR10RA264)the Young Scholars Science Foundation of Lanzhou Jiaotong University,China(Nos.2020039,2020017)the Special Funds for Guiding Local Scientific and Technological Development by the Central Government,China(No.22ZY1QA005)。
文摘In order to provide more insights into the damage propagation composite wind turbine blades(blade)under cyclic fatigue loading,a stiffness degradation model for blade is proposed based on the full-scale fatigue testing of a blade.A novel non-linear fatigue damage accumulation model is proposed using the damage assessment theories of composite laminates for the first time.Then,a stiffness degradation model is established based on the correlation of fatigue damage and residual stiffness of the composite laminates.Finally,a stiffness degradation model for the blade is presented based on the full-scale fatigue testing.The scientific rationale of the proposed stiffness model of blade is verified by using full-scale fatigue test data of blade with a total length of 52.5 m.The results indicate that the proposed stiffness degradation model of the blade agrees well with the fatigue testing results of this blade.This work provides a basis for evaluating the fatigue damage and lifetime of blade under cyclic fatigue loading.
基金National Natural Science Foundation of China(No.50678063)
文摘Full-scale model tests were carried out on a 30 m span prestressed concrete box girder and a 20 m span prestressed concrete hollow slab. Failure models were prestressed reinforcement tensile failure and crashing of roof concrete, respectively. The ductility indexes of the box girder and hollow slab were 1.99 and 1.23, respectively, according to the energy viewpoint. Based on the horizontal section hypothesis, the nonlinear computation procedure was established using the limited banding law, and it could carry out the entire performance analysis including the unloading, mainly focusing on the ways to achieve the unloading curves computation through stress-strain, moment-curvature and load-displacement curves. Through the procedure, parameters that influence on the bearing capacity, deformation performance and ductility of the structures were analyzed. Those parameters were quantity of prestressed reinforcement and tension coefficients of prestressed reinforcement. From the analysis, some useful conclusions can be obtained.
基金Project([2005]205)supported by the Science and Technology Planning Project of Water Resources Department of Guangdong Province,ChinaProject(2012-7)supported by Guangdong Bureau of Highway Administration,ChinaProject(2012210020203)supported by the Fundamental Research Funds for the Central Universities,China
文摘Employing an ideal elasto-plastic model,the typically used strength reduction method reduced the strength of all soil elements of a slope.Therefore,this method was called the global strength reduction method(GSRM).However,the deformation field obtained by GSRM could not reflect the real deformation of a slope when the slope became unstable.For most slopes,failure occurs once the strength of some regional soil is sufficiently weakened; thus,the local strength reduction method(LSRM)was proposed to analyze slope stability.In contrast with GSRM,LSRM only reduces the strength of local soil,while the strength of other soil remains unchanged.Therefore,deformation by LSRM is more reasonable than that by GSRM.In addition,the accuracy of the slope's deformation depends on the constitutive model to a large degree,and the variable-modulus elasto-plastic model was thus adopted.This constitutive model was an improvement of the Duncan–Chang model,which modified soil's deformation modulus according to stress level,and it thus better reflected the plastic feature of soil.Most importantly,the parameters of the variable-modulus elasto-plastic model could be determined through in-situ tests,and parameters determination by plate loading test and pressuremeter test were introduced.Therefore,it is easy to put this model into practice.Finally,LSRM and the variable-modulus elasto-plastic model were used to analyze Egongdai ancient landslide.Safety factor,deformation field,and optimal reinforcement measures for Egongdai ancient landslide were obtained based on the proposed method.
基金Science and Technology Authority of Taiwan under Grant No.107-2221-E-492-004-
文摘Viscoelastic(VE) dampers, with their stiffness and energy dissipation capabilities, have been widely used in civil engineering for mitigating wind-induced vibration and seismic responses of structures, thus enhancing the comfort of residents and serviceability of equipment inside. In past relevant research, most analytical models for characterizing the mechanical behavior of VE dampers were verified by comparing their predictions with performance test results from small-scale specimens, which might not adequately or conservatively represent the actual behavior of full-scale dampers, especially with regard to the ambient temperature, temperature rise, and heat convection effects. Thus, in this study, by using a high-performance testing facility with a temperature control system, full-scale VE dampers were dynamically tested with different displacement amplitudes, excitation frequencies, and ambient temperatures. By comparing the analytical predictions with the experimental results, it is demonstrated that adopting the fractional derivative method together with considering the effects of excitation frequencies, ambient temperatures, temperature rises, softening, and hardening, can reproduce the design performance of full-scale VE dampers very well.
基金Supported by SSFC(04BTJ002),the National Natural Science Foundation of China(10371016) and the Post-Doctorial Grant in Southeast University.
文摘This paper presents an approach for estimating power of the score test, based on an asymptotic approximation to the power of the score test under contiguous alternatives. The method is applied to the problem of power calculations for the score test of heteroscedasticity in European rabbit data (Ratkowsky, 1983). Simulation studies are presented which indicate that the asymptotic approximation to the finite-sample situation is good over a wide range of parameter configurations.
基金Foundation item: Supported by the National Natural Science Foundation of China(10501053) Acknowledgement I would like to thank Henan Society of Applied Statistics for which give me a chance to declare my opinion about the varying-coefficient model.
文摘Varying-coefficient models are a useful extension of classical linear model. They are widely applied to economics, biomedicine, epidemiology, and so on. There are extensive studies on them in the latest three decade years. In this paper, many of models related to varying-coefficient models are gathered up. All kinds of the estimation procedures and theory of hypothesis test on the varying-coefficients model are summarized. Prom my opinion, some aspects waiting to study are proposed.
文摘In this paper, we propose the test statistic to check whether the nonparametric function in partially linear models is linear or not. We estimate the nonparametric function in alternative by using the local linear method, and then estimate the parameters by the two stage method. The test statistic under the null hypothesis is calculated, and it is shown to be asymptotically normal.
文摘In this paper, we extend the generalized likelihood ratio test to the varying-coefficient models with censored data. We investigate the asymptotic behavior of the proposed test and demonstrate that its limiting null distribution follows a distribution, with the scale constant and the number of degree of freedom being independent of nuisance parameters or functions, which is called the wilks phenomenon. Both simulated and real data examples are given to illustrate the performance of the testing approach.
文摘We propose the test statistic to check whether the nonpararnetric functions in two partially linear models are equality or not in this paper. We estimate the nonparametric function both in null hypothesis and the alternative by the local linear method, where we ignore the parametric components, and then estimate the parameters by the two stage method. The test statistic is derived, and it is shown to be asymptotically normal under the null hypothesis.
基金National Natural Science Foundation of China under Grant Nos.51622803 and 51878103China Postdoctoral Science Foundation under Grant No.2021M692689。
文摘Stress waves propagate along vertical,radial and circumferential directions when a non-uniformly distributed load is applied at one end of a three-dimensional shaft.As a result,the receiving signals are usually mixed with undesired interference components,often featuring as high-frequency fluctuations.Previous studies have revealed that sectional geometry(shape and size)greatly affects the high-frequency interference.In this study,low strain dynamic testing on full-scale X-section concrete is conducted in order to investigate the influences of high-frequency interference on velocity responses at the pile head.Emphasis is placed on the frequency and peak value of interference waves at various receiving points.Additionally,the effects of the geometrical,and mechanical properties of the pile shaft on high-frequency interference are elaborated on through the three-dimensional finite element method.The results show that the measured wave is obscured by interference waves superposed by two types of high-frequency components.The modulus and cross-sectional area are contributing factors to the frequency and peak value of the interference waves.On the other hand,the position with the least interference is determined,to some extent,by the accurate shape of the X-section.
文摘One of the key problems in collaborative geometric modeling systems is topological entity correspondence when topolog- ical structure of geometry models on collaborative sites changes, ha this article, we propose a solution for tracking topological entity alterations in 3D collaborative modeling environment. We firstly make a thorough analysis and detailed categorization on the altera- tion properties and causations for each type of topological entity, namely topological face and topological edge. Based on collabora- tive topological entity naming mechanism, a data structure called TEST (Topological Entity Structure Tree) is introduced to track the changing history and current state of each topological entity, to embody the relationship among topological entities. Rules and algo- rithms are presented for identification of topological entities referenced by operations for correct execution and model consistency. The algorithm has been verified within the prototype we have implemented with ACIS.
文摘With the increasing popularity of high-resolution remote sensing images,the remote sensing image retrieval(RSIR)has always been a topic of major issue.A combined,global non-subsampled shearlet transform(NSST)-domain statistical features(NSSTds)and local three dimensional local ternary pattern(3D-LTP)features,is proposed for high-resolution remote sensing images.We model the NSST image coefficients of detail subbands using 2-state laplacian mixture(LM)distribution and its three parameters are estimated using Expectation-Maximization(EM)algorithm.We also calculate the statistical parameters such as subband kurtosis and skewness from detail subbands along with mean and standard deviation calculated from approximation subband,and concatenate all of them with the 2-state LM parameters to describe the global features of the image.The various properties of NSST such as multiscale,localization and flexible directional sensitivity make it a suitable choice to provide an effective approximation of an image.In order to extract the dense local features,a new 3D-LTP is proposed where dimension reduction is performed via selection of‘uniform’patterns.The 3D-LTP is calculated from spatial RGB planes of the input image.The proposed inter-channel 3D-LTP not only exploits the local texture information but the color information is captured too.Finally,a fused feature representation(NSSTds-3DLTP)is proposed using new global(NSSTds)and local(3D-LTP)features to enhance the discriminativeness of features.The retrieval performance of proposed NSSTds-3DLTP features are tested on three challenging remote sensing image datasets such as WHU-RS19,Aerial Image Dataset(AID)and PatternNet in terms of mean average precision(MAP),average normalized modified retrieval rank(ANMRR)and precision-recall(P-R)graph.The experimental results are encouraging and the NSSTds-3DLTP features leads to superior retrieval performance compared to many well known existing descriptors such as Gabor RGB,Granulometry,local binary pattern(LBP),Fisher vector(FV),vector of locally aggregated descriptors(VLAD)and median robust extended local binary pattern(MRELBP).For WHU-RS19 dataset,in terms of{MAP,ANMRR},the NSSTds-3DLTP improves upon Gabor RGB,Granulometry,LBP,FV,VLAD and MRELBP descriptors by{41.93%,20.87%},{92.30%,32.68%},{86.14%,31.97%},{18.18%,15.22%},{8.96%,19.60%}and{15.60%,13.26%},respectively.For AID,in terms of{MAP,ANMRR},the NSSTds-3DLTP improves upon Gabor RGB,Granulometry,LBP,FV,VLAD and MRELBP descriptors by{152.60%,22.06%},{226.65%,25.08%},{185.03%,23.33%},{80.06%,12.16%},{50.58%,10.49%}and{62.34%,3.24%},respectively.For PatternNet,the NSSTds-3DLTP respectively improves upon Gabor RGB,Granulometry,LBP,FV,VLAD and MRELBP descriptors by{32.79%,10.34%},{141.30%,24.72%},{17.47%,10.34%},{83.20%,19.07%},{21.56%,3.60%},and{19.30%,0.48%}in terms of{MAP,ANMRR}.The moderate dimensionality of simple NSSTds-3DLTP allows the system to run in real-time.
基金the National Natural Science Founda-tion of China(No.51665029)。
文摘In order to predict the lifetime of products appropriately with long lifetime and high reliability,the accelerated degradation testing(ADT)has been proposed.Composite wind turbine blade is one of the most important components in wind turbine system.Its fatigue cycle is very long in practice.A full-scale fatigue testing is usually used to verify the design of a new blade.In general,the full-scale fatigue testing of blade is accelerated on the basis of the damage equivalent principle.During the full-scale fatigue test ing,blade is subjected to higher testing load than normal operat ing conditions;consequently,the performance degradation of the blade is hastened over time.The full-scale fatigue testing of blade is regarded as a special ADT.According to the fatigue failure criterion,we choose blade stiffness as the characteristic quantity of the blade performance,and propose an accelerated model(AM)for blade on the basis of the theories of ADT.Then,degradation path of the blade stiffness is modeled by using Gamma process.Finally,the lifet ime prediction of full-scale megawatt(MW)blade is conducted by combining the proposed AM and blade stiffness degradation model.The prediction results prove the reasonability and validity of this study.This can supply a new approach to predict the lifetime of the full-scale MW blade.
文摘In linear regression model, the influence on the regression coefficients has beed paid great attention and other aspects such as the influence on confidence regions have also been studied. However, influence on F-test in linear regression model received few consideration. This paper examines the local influence of small perturbations on Fstatistic. The diagnostic results permit one to check the sensitivity of F-statistic to the exact perturbations of error variance, explanatory variables and response variables. This method is applied to testing problem of transformation parameter in transformation model.Diagnostics are illustrated with two examples and compared with standard method.