Human's real life is within a colorful world. Compared to the gray images, color images contain more information and have better visual effects. In today's digital image processing, image segmentation is an im...Human's real life is within a colorful world. Compared to the gray images, color images contain more information and have better visual effects. In today's digital image processing, image segmentation is an important section for computers to "understand" images and edge detection is always one of the most important methods in the field of image segmentation. Edges in color images are considered as local discontinuities both in color and spatial domains. Despite the intensive study based on integration of single-channel edge detection results, and on vector space analysis, edge detection in color images remains as a challenging issue.展开更多
The mechanical behavior of plain woven Carbon Fiber-Reinforced Polymer(CFRP)composites under Three-Point Bending(TPB)is investigated via experimental and numerical approaches.Multiscale models,including microscale,mes...The mechanical behavior of plain woven Carbon Fiber-Reinforced Polymer(CFRP)composites under Three-Point Bending(TPB)is investigated via experimental and numerical approaches.Multiscale models,including microscale,mesoscale and macroscale models,have been developed to characterize the TPB strength and damages.Thereinto,Representative Volume Elements(RVEs)of the microscale and mesoscale structures are established to determine the effective properties of carbon-fiber yarn and CFRP composites,respectively.Aimed at accurately and efficiently predicting the TPB behavior,an Equivalent Cross-Ply Laminate(ECPL)cell is proposed to simplify the inherent woven architecture,and the effective properties of the subcell are computed using a local homogenization approach.The macroscale model of the TPB specimen is constructed by a topology structure of ECPL cells to predict the mechanical behavior.The TPB experiments have been performed to validate the multiscale models.Both the experimental and numerical results reveal that delamination mainly appears in the top and bottom interfaces of the CFRP laminates.And matrix cracking and delamination are identified as the significant damage modes during the TPB process.Finally,the quasi-static and dynamic behaviors of plain woven composites are discussed by comparing the results of Low-Velocity Impact(LVI)and TPB simulations.展开更多
基金National Natural Science Foundation of China (No.60374071)
文摘Human's real life is within a colorful world. Compared to the gray images, color images contain more information and have better visual effects. In today's digital image processing, image segmentation is an important section for computers to "understand" images and edge detection is always one of the most important methods in the field of image segmentation. Edges in color images are considered as local discontinuities both in color and spatial domains. Despite the intensive study based on integration of single-channel edge detection results, and on vector space analysis, edge detection in color images remains as a challenging issue.
基金financial supports from the National Natural Science Foundation of China (No. 52005451)the China Postdoctoral Science Foundation (No. 2022M712876)+1 种基金supported by the Joint Fund of Research and Development Program of Henan Province, China (No. 222301420033)the Foundation of Henan Center for Outstanding Overseas Scientists, China (No. GZS2021001)
文摘The mechanical behavior of plain woven Carbon Fiber-Reinforced Polymer(CFRP)composites under Three-Point Bending(TPB)is investigated via experimental and numerical approaches.Multiscale models,including microscale,mesoscale and macroscale models,have been developed to characterize the TPB strength and damages.Thereinto,Representative Volume Elements(RVEs)of the microscale and mesoscale structures are established to determine the effective properties of carbon-fiber yarn and CFRP composites,respectively.Aimed at accurately and efficiently predicting the TPB behavior,an Equivalent Cross-Ply Laminate(ECPL)cell is proposed to simplify the inherent woven architecture,and the effective properties of the subcell are computed using a local homogenization approach.The macroscale model of the TPB specimen is constructed by a topology structure of ECPL cells to predict the mechanical behavior.The TPB experiments have been performed to validate the multiscale models.Both the experimental and numerical results reveal that delamination mainly appears in the top and bottom interfaces of the CFRP laminates.And matrix cracking and delamination are identified as the significant damage modes during the TPB process.Finally,the quasi-static and dynamic behaviors of plain woven composites are discussed by comparing the results of Low-Velocity Impact(LVI)and TPB simulations.