In this paper, we try to find numerical solution of y'(x)= p(x)y(x)+g(x)+λ∫ba K(x, t)y(t)dt, y(a)=α. a≤x≤b, a≤t≤b or y'(x)= p(x)y(x)+g(x)+λ∫xa K(x, t)y(t)dt, y(a)=α. a≤x≤b, a≤t≤b by using Local p...In this paper, we try to find numerical solution of y'(x)= p(x)y(x)+g(x)+λ∫ba K(x, t)y(t)dt, y(a)=α. a≤x≤b, a≤t≤b or y'(x)= p(x)y(x)+g(x)+λ∫xa K(x, t)y(t)dt, y(a)=α. a≤x≤b, a≤t≤b by using Local polynomial regression (LPR) method. The numerical solution shows that this method is powerful in solving integro-differential equations. The method will be tested on three model problems in order to demonstrate its usefulness and accuracy.展开更多
为提高移动机器人在拥挤、混杂的室内环境中的定位能力,提出了在图像显著特征区域内提取积分不变特征-LSRII(local salient region integral invariant)特征的方法,并将LSRII特征应用到粒子滤波定位中,实现机器人在室内环境下的全局定...为提高移动机器人在拥挤、混杂的室内环境中的定位能力,提出了在图像显著特征区域内提取积分不变特征-LSRII(local salient region integral invariant)特征的方法,并将LSRII特征应用到粒子滤波定位中,实现机器人在室内环境下的全局定位。实验结果表明,所提出的定位方法在拥挤、混杂的室内环境中能够实现可靠的定位。展开更多
文摘In this paper, we try to find numerical solution of y'(x)= p(x)y(x)+g(x)+λ∫ba K(x, t)y(t)dt, y(a)=α. a≤x≤b, a≤t≤b or y'(x)= p(x)y(x)+g(x)+λ∫xa K(x, t)y(t)dt, y(a)=α. a≤x≤b, a≤t≤b by using Local polynomial regression (LPR) method. The numerical solution shows that this method is powerful in solving integro-differential equations. The method will be tested on three model problems in order to demonstrate its usefulness and accuracy.
文摘为提高移动机器人在拥挤、混杂的室内环境中的定位能力,提出了在图像显著特征区域内提取积分不变特征-LSRII(local salient region integral invariant)特征的方法,并将LSRII特征应用到粒子滤波定位中,实现机器人在室内环境下的全局定位。实验结果表明,所提出的定位方法在拥挤、混杂的室内环境中能够实现可靠的定位。