Based on a representation lemma. Riesz type kernels on the local field K and on the integer ring O in K are coitstructed. Furthermore, we discuss approximation theorems for the Lipschitz class Lip(L ;α) ana the Lp bo...Based on a representation lemma. Riesz type kernels on the local field K and on the integer ring O in K are coitstructed. Furthermore, we discuss approximation theorems for the Lipschitz class Lip(L ;α) ana the Lp boundedness of such operators motivated by the open problem: Does σηfa,s→f for f ∈L1(O) (see M. H. Taible-son [6] and [5])?展开更多
Currently, some fault prognosis technology occasionally has relatively unsatisfied performance especially for in- cipient faults in nonlinear processes duo to their large time delay and complex internal connection. To...Currently, some fault prognosis technology occasionally has relatively unsatisfied performance especially for in- cipient faults in nonlinear processes duo to their large time delay and complex internal connection. To overcome this deficiency, multivariate time delay analysis is incorporated into the high sensitive local kernel principal component analysis. In this approach, mutual information estimation and Bayesian information criterion (BIC) are separately used to acquire the correlation degree and time delay of the process variables. Moreover, in order to achieve prediction, time series prediction by back propagation (BP) network is applied whose input is multivar- iate correlated time series other than the original time series. Then the multivariate time delayed series and future values obtained by time series prediction are combined to construct the input of local kernel principal component analysis (LKPCA) model for incipient fault prognosis. The new method has been exemplified in a sim- ple nonlinear process and the complicated Tennessee Eastman (TE) benchmark process. The results indicate that the new method has suoerioritv in the fault prognosis sensitivity over other traditional fault prognosis methods.展开更多
Since data services are penetrating into our daily life rapidly, the mobile network becomes more complicated, and the amount of data transmission is more and more increasing. In this case, the traditional statistical ...Since data services are penetrating into our daily life rapidly, the mobile network becomes more complicated, and the amount of data transmission is more and more increasing. In this case, the traditional statistical methods for anomalous cell detection cannot adapt to the evolution of networks, and data mining becomes the mainstream. In this paper, we propose a novel kernel density-based local outlier factor(KLOF) to assign a degree of being an outlier to each object. Firstly, the notion of KLOF is introduced, which captures exactly the relative degree of isolation. Then, by analyzing its properties, including the tightness of upper and lower bounds, sensitivity of density perturbation, we find that KLOF is much greater than 1 for outliers. Lastly, KLOFis applied on a real-world dataset to detect anomalous cells with abnormal key performance indicators(KPIs) to verify its reliability. The experiment shows that KLOF can find outliers efficiently. It can be a guideline for the operators to perform faster and more efficient trouble shooting.展开更多
Multiple kernel clustering based on local kernel alignment has achieved outstanding clustering performance by applying local kernel alignment on each sample.However,we observe that most of existing works usually assum...Multiple kernel clustering based on local kernel alignment has achieved outstanding clustering performance by applying local kernel alignment on each sample.However,we observe that most of existing works usually assume that each local kernel alignment has the equal contribution to clustering performance,while local kernel alignment on different sample actually has different contribution to clustering performance.Therefore this assumption could have a negative effective on clustering performance.To solve this issue,we design a multiple kernel clustering algorithm based on self-weighted local kernel alignment,which can learn a proper weight to clustering performance for each local kernel alignment.Specifically,we introduce a new optimization variable-weight-to denote the contribution of each local kernel alignment to clustering performance,and then,weight,kernel combination coefficients and cluster membership are alternately optimized under kernel alignment frame.In addition,we develop a three-step alternate iterative optimization algorithm to address the resultant optimization problem.Broad experiments on five benchmark data sets have been put into effect to evaluate the clustering performance of the proposed algorithm.The experimental results distinctly demonstrate that the proposed algorithm outperforms the typical multiple kernel clustering algorithms,which illustrates the effectiveness of the proposed algorithm.展开更多
Under the assumption that the wiretapper can get at most r(r < n) independent messages, Cai et al. showed that any rate n multicast code can be modified to another secure network code with transmitting rate n- r by...Under the assumption that the wiretapper can get at most r(r < n) independent messages, Cai et al. showed that any rate n multicast code can be modified to another secure network code with transmitting rate n- r by a properly chosen matrix Q^(-1). They also gave the construction for searching such an n × n nonsingular matrix Q. In this paper, we find that their method implies an efficient construction of Q. That is to say, Q can be taken as a special block lower triangular matrix with diagonal subblocks being the(n- r) ×(n- r)and r × r identity matrices, respectively. Moreover, complexity analysis is made to show the efficiency of the specific construction.展开更多
Longitudinal cracks are common defects of continuous casting slabs and may lead to serious quality accidents. Image capturing and recognition of hot slabs is an effective way for on-line detection of cracks, and recog...Longitudinal cracks are common defects of continuous casting slabs and may lead to serious quality accidents. Image capturing and recognition of hot slabs is an effective way for on-line detection of cracks, and recognition of cracks is essential because the surface of hot slabs is very complicated. In order to detect the surface longitudinal cracks of the slabs, a new feature extraction method based on Curvelet transform and kernel locality preserving projections (KLPP) is proposed. First, sample images are decomposed into three levels by Curvelet transform. Second, Fourier transform is applied to all sub-band images and the Fourier amplitude spectrum of each sub-band is computed to get features with translational invariance. Third, five kinds of statistical features of the Fourier amplitude spectrum are computed and combined in different forms. Then, KLPP is employed for dimensionality reduction of the obtained 62 types of high-dimensional combined features. Finally, a support vector machine (SVM) is used for sample set classification. Experiments with samples from a real production line of continuous casting slabs show that the algorithm is effective to detect longitudinal cracks, and the classification rate is 91.89%.展开更多
Space object recognition plays an important role in spatial exploitation and surveillance, followed by two main problems: lacking of data and drastic changes in viewpoints. In this article, firstly, we build a three-...Space object recognition plays an important role in spatial exploitation and surveillance, followed by two main problems: lacking of data and drastic changes in viewpoints. In this article, firstly, we build a three-dimensional (3D) satellites dataset named BUAA Satellite Image Dataset (BUAA-SID 1.0) to supply data for 3D space object research. Then, based on the dataset, we propose to recognize full-viewpoint 3D space objects based on kernel locality preserving projections (KLPP). To obtain more accurate and separable description of the objects, firstly, we build feature vectors employing moment invariants, Fourier descriptors, region covariance and histogram of oriented gradients. Then, we map the features into kernel space followed by dimensionality reduction using KLPP to obtain the submanifold of the features. At last, k-nearest neighbor (kNN) is used to accomplish the classification. Experimental results show that the proposed approach is more appropriate for space object recognition mainly considering changes of viewpoints. Encouraging recognition rate could be obtained based on images in BUAA-SID 1.0, and the highest recognition result could achieve 95.87%.展开更多
It remains a challenging task to segment images that are distorted by noise and intensity inhomogeneity.To overcome these problems, in this paper, we present a novel region-based active contour model based on local in...It remains a challenging task to segment images that are distorted by noise and intensity inhomogeneity.To overcome these problems, in this paper, we present a novel region-based active contour model based on local intensity information and a kernel metric. By introducing intensity information about the local region, the proposed model can accurately segment images with intensity inhomogeneity. To enhance the model's robustness to noise and outliers, we introduce a kernel metric as its objective functional. To more accurately detect boundaries, we apply convex optimization to this new model, which uses a weighted total-variation norm given by an edge indicator function. Lastly, we use the split Bregman iteration method to obtain the numerical solution. We conducted an extensive series of experiments on both synthetic and real images to evaluate our proposed method, and the results demonstrate significant improvements in terms of efficiency and accuracy, compared with the performance of currently popular methods.展开更多
Predicting protein functions is an important issue in the post-genomic era. This paper studies several network-based kernels including local linear embedding (LLE) kernel method, diffusion kernel and laplacian kerne...Predicting protein functions is an important issue in the post-genomic era. This paper studies several network-based kernels including local linear embedding (LLE) kernel method, diffusion kernel and laplacian kernel to uncover the relationship between proteins functions and protein-protein interactions (PPI). The author first construct kernels based on PPI networks, then apply support vector machine (SVM) techniques to classify proteins into different functional groups. The 5-fold cross validation is then applied to the selected 359 GO terms to compare the performance of different kernels and guilt-by-association methods including neighbor counting methods and Chi-square methods. Finally, the authors conduct predictions of functions of some unknown genes and verify the preciseness of our prediction in part by the information of other data source.展开更多
An electroencephalogram(EEG)signal projection using kernel discriminative locality preserving canonical correlation analysis(KDLPCCA)-based correlation with steady-state visual evoked potential(SSVEP)templates for fre...An electroencephalogram(EEG)signal projection using kernel discriminative locality preserving canonical correlation analysis(KDLPCCA)-based correlation with steady-state visual evoked potential(SSVEP)templates for frequency recognition is presented in this paper.With KDLPCCA,not only a non-linear correlation but also local properties and discriminative information of each class sample are considered to extract temporal and frequency features of SSVEP signals.The new projected EEG features are classified with classical machine learning algorithms,namely,K-nearest neighbors(KNNs),naive Bayes,and random forest classifiers.To demonstrate the effectiveness of the proposed method,16-channel SSVEP data corresponding to 4 frequencies collected from 5 subjects were used to evaluate the performance.Compared with the state of the art canonical correlation analysis(CCA),experimental results show significant improvements in classification accuracy and information transfer rate(ITR),achieving 100%and 240 bits/min with 0.5 s sample block.The superior performance demonstrates that this method holds the promising potential to achieve satisfactory performance for high-accuracy SSVEP-based brain-computer interfaces.展开更多
文摘Based on a representation lemma. Riesz type kernels on the local field K and on the integer ring O in K are coitstructed. Furthermore, we discuss approximation theorems for the Lipschitz class Lip(L ;α) ana the Lp boundedness of such operators motivated by the open problem: Does σηfa,s→f for f ∈L1(O) (see M. H. Taible-son [6] and [5])?
基金Supported by the National Natural Science Foundation of China(61573051,61472021)the Natural Science Foundation of Beijing(4142039)+1 种基金Open Fund of the State Key Laboratory of Software Development Environment(SKLSDE-2015KF-01)Fundamental Research Funds for the Central Universities(PT1613-05)
文摘Currently, some fault prognosis technology occasionally has relatively unsatisfied performance especially for in- cipient faults in nonlinear processes duo to their large time delay and complex internal connection. To overcome this deficiency, multivariate time delay analysis is incorporated into the high sensitive local kernel principal component analysis. In this approach, mutual information estimation and Bayesian information criterion (BIC) are separately used to acquire the correlation degree and time delay of the process variables. Moreover, in order to achieve prediction, time series prediction by back propagation (BP) network is applied whose input is multivar- iate correlated time series other than the original time series. Then the multivariate time delayed series and future values obtained by time series prediction are combined to construct the input of local kernel principal component analysis (LKPCA) model for incipient fault prognosis. The new method has been exemplified in a sim- ple nonlinear process and the complicated Tennessee Eastman (TE) benchmark process. The results indicate that the new method has suoerioritv in the fault prognosis sensitivity over other traditional fault prognosis methods.
基金supported by the National Basic Research Program of China (973 Program: 2013CB329004)
文摘Since data services are penetrating into our daily life rapidly, the mobile network becomes more complicated, and the amount of data transmission is more and more increasing. In this case, the traditional statistical methods for anomalous cell detection cannot adapt to the evolution of networks, and data mining becomes the mainstream. In this paper, we propose a novel kernel density-based local outlier factor(KLOF) to assign a degree of being an outlier to each object. Firstly, the notion of KLOF is introduced, which captures exactly the relative degree of isolation. Then, by analyzing its properties, including the tightness of upper and lower bounds, sensitivity of density perturbation, we find that KLOF is much greater than 1 for outliers. Lastly, KLOFis applied on a real-world dataset to detect anomalous cells with abnormal key performance indicators(KPIs) to verify its reliability. The experiment shows that KLOF can find outliers efficiently. It can be a guideline for the operators to perform faster and more efficient trouble shooting.
基金This work was supported by the National Key R&D Program of China(No.2018YFB1003203)National Natural Science Foundation of China(Nos.61672528,61773392,61772561)+1 种基金Educational Commission of Hu Nan Province,China(No.14B193)the Key Research&Development Plan of Hunan Province(No.2018NK2012).
文摘Multiple kernel clustering based on local kernel alignment has achieved outstanding clustering performance by applying local kernel alignment on each sample.However,we observe that most of existing works usually assume that each local kernel alignment has the equal contribution to clustering performance,while local kernel alignment on different sample actually has different contribution to clustering performance.Therefore this assumption could have a negative effective on clustering performance.To solve this issue,we design a multiple kernel clustering algorithm based on self-weighted local kernel alignment,which can learn a proper weight to clustering performance for each local kernel alignment.Specifically,we introduce a new optimization variable-weight-to denote the contribution of each local kernel alignment to clustering performance,and then,weight,kernel combination coefficients and cluster membership are alternately optimized under kernel alignment frame.In addition,we develop a three-step alternate iterative optimization algorithm to address the resultant optimization problem.Broad experiments on five benchmark data sets have been put into effect to evaluate the clustering performance of the proposed algorithm.The experimental results distinctly demonstrate that the proposed algorithm outperforms the typical multiple kernel clustering algorithms,which illustrates the effectiveness of the proposed algorithm.
基金Supported by the National Natural Science Foundation of China(61201253)
文摘Under the assumption that the wiretapper can get at most r(r < n) independent messages, Cai et al. showed that any rate n multicast code can be modified to another secure network code with transmitting rate n- r by a properly chosen matrix Q^(-1). They also gave the construction for searching such an n × n nonsingular matrix Q. In this paper, we find that their method implies an efficient construction of Q. That is to say, Q can be taken as a special block lower triangular matrix with diagonal subblocks being the(n- r) ×(n- r)and r × r identity matrices, respectively. Moreover, complexity analysis is made to show the efficiency of the specific construction.
基金Sponsored by Program for New Century Excellent Talents in University of China(NCET-08-0726)Beijing Nova Program of China(2007B027)
文摘Longitudinal cracks are common defects of continuous casting slabs and may lead to serious quality accidents. Image capturing and recognition of hot slabs is an effective way for on-line detection of cracks, and recognition of cracks is essential because the surface of hot slabs is very complicated. In order to detect the surface longitudinal cracks of the slabs, a new feature extraction method based on Curvelet transform and kernel locality preserving projections (KLPP) is proposed. First, sample images are decomposed into three levels by Curvelet transform. Second, Fourier transform is applied to all sub-band images and the Fourier amplitude spectrum of each sub-band is computed to get features with translational invariance. Third, five kinds of statistical features of the Fourier amplitude spectrum are computed and combined in different forms. Then, KLPP is employed for dimensionality reduction of the obtained 62 types of high-dimensional combined features. Finally, a support vector machine (SVM) is used for sample set classification. Experiments with samples from a real production line of continuous casting slabs show that the algorithm is effective to detect longitudinal cracks, and the classification rate is 91.89%.
基金National Natural Science Foundation of China (60776793,60802043)National Basic Research Program of China (2010CB327900)
文摘Space object recognition plays an important role in spatial exploitation and surveillance, followed by two main problems: lacking of data and drastic changes in viewpoints. In this article, firstly, we build a three-dimensional (3D) satellites dataset named BUAA Satellite Image Dataset (BUAA-SID 1.0) to supply data for 3D space object research. Then, based on the dataset, we propose to recognize full-viewpoint 3D space objects based on kernel locality preserving projections (KLPP). To obtain more accurate and separable description of the objects, firstly, we build feature vectors employing moment invariants, Fourier descriptors, region covariance and histogram of oriented gradients. Then, we map the features into kernel space followed by dimensionality reduction using KLPP to obtain the submanifold of the features. At last, k-nearest neighbor (kNN) is used to accomplish the classification. Experimental results show that the proposed approach is more appropriate for space object recognition mainly considering changes of viewpoints. Encouraging recognition rate could be obtained based on images in BUAA-SID 1.0, and the highest recognition result could achieve 95.87%.
基金supported by the National Natural Science Foundation of China(No.61472270)
文摘It remains a challenging task to segment images that are distorted by noise and intensity inhomogeneity.To overcome these problems, in this paper, we present a novel region-based active contour model based on local intensity information and a kernel metric. By introducing intensity information about the local region, the proposed model can accurately segment images with intensity inhomogeneity. To enhance the model's robustness to noise and outliers, we introduce a kernel metric as its objective functional. To more accurately detect boundaries, we apply convex optimization to this new model, which uses a weighted total-variation norm given by an edge indicator function. Lastly, we use the split Bregman iteration method to obtain the numerical solution. We conducted an extensive series of experiments on both synthetic and real images to evaluate our proposed method, and the results demonstrate significant improvements in terms of efficiency and accuracy, compared with the performance of currently popular methods.
基金This research is supported in part by HKRGC Grant 7017/07P, HKU CRCG Grants, HKU strategic theme grant on computational sciences, HKU Hung Hing Ying Physical Science Research Grant, National Natural Science Foundation of China Grant No. 10971075 and Guangdong Provincial Natural Science Grant No. 9151063101000021. The preliminary version of this paper has been presented in the OSB2009 conference and published in the corresponding conference proceedings[25]. The authors would like to thank the anonymous referees for their helpful comments and suggestions.
文摘Predicting protein functions is an important issue in the post-genomic era. This paper studies several network-based kernels including local linear embedding (LLE) kernel method, diffusion kernel and laplacian kernel to uncover the relationship between proteins functions and protein-protein interactions (PPI). The author first construct kernels based on PPI networks, then apply support vector machine (SVM) techniques to classify proteins into different functional groups. The 5-fold cross validation is then applied to the selected 359 GO terms to compare the performance of different kernels and guilt-by-association methods including neighbor counting methods and Chi-square methods. Finally, the authors conduct predictions of functions of some unknown genes and verify the preciseness of our prediction in part by the information of other data source.
基金the National Natural Science Foundation of China(Nos.61702395 and 61972302)the Science and Technology Projects of Xi’an,China(No.201809170CX11JC12)。
文摘An electroencephalogram(EEG)signal projection using kernel discriminative locality preserving canonical correlation analysis(KDLPCCA)-based correlation with steady-state visual evoked potential(SSVEP)templates for frequency recognition is presented in this paper.With KDLPCCA,not only a non-linear correlation but also local properties and discriminative information of each class sample are considered to extract temporal and frequency features of SSVEP signals.The new projected EEG features are classified with classical machine learning algorithms,namely,K-nearest neighbors(KNNs),naive Bayes,and random forest classifiers.To demonstrate the effectiveness of the proposed method,16-channel SSVEP data corresponding to 4 frequencies collected from 5 subjects were used to evaluate the performance.Compared with the state of the art canonical correlation analysis(CCA),experimental results show significant improvements in classification accuracy and information transfer rate(ITR),achieving 100%and 240 bits/min with 0.5 s sample block.The superior performance demonstrates that this method holds the promising potential to achieve satisfactory performance for high-accuracy SSVEP-based brain-computer interfaces.