The active contour model based on local image fitting (LIF) energy is an effective method to deal with intensity inhomo- geneities, but it always conflicts with the local minimum problem because LIF has a nonconvex ...The active contour model based on local image fitting (LIF) energy is an effective method to deal with intensity inhomo- geneities, but it always conflicts with the local minimum problem because LIF has a nonconvex energy function form. At the same time, the parameters of LIF are hard to be chosen for better per- formance. A global minimization of the adaptive LIF energy model is proposed. The regularized length term which constrains the zero level set is introduced to improve the accuracy of the bound- aries, and a global minimization of the active contour model is presented, in addition, based on the statistical information of the intensity histogram, the standard deviation σ with respect to the truncated Gaussian window is automatically computed according to images. Consequently, the proposed method improves the performance and adaptivity to deal with the intensity inhomo- geneities. Experimental results for synthetic and real images show desirable performance and efficiency of the proposed method.展开更多
针对乳腺核磁共振成像的灰度不均匀现象,提出一种融合全局和局部信息的水平集图像分割方法(global and local combined C_V,GLCCV)。该方法将图像的局部信息融入基于全局信息的Chan-Vese(C_V)水平集方法;根据局部灰度拟合均值占全局灰...针对乳腺核磁共振成像的灰度不均匀现象,提出一种融合全局和局部信息的水平集图像分割方法(global and local combined C_V,GLCCV)。该方法将图像的局部信息融入基于全局信息的Chan-Vese(C_V)水平集方法;根据局部灰度拟合均值占全局灰度均值的比例,构造自适应平衡指示函数调节全局和局部效应之间的均衡;加入惩罚项以避免重新初始化。对比实验表明,该水平集分割模型能够有效分割多种灰度不均匀场景下的乳腺MR图像,在抗噪和精确性方面优于融合前的分割方法。展开更多
基金supported by the National Natural Science Foundation of China(6100317061372142+2 种基金61103121)the Fundamental Research Funds for the Central Universities SCUT(2014ZG0037)the China Postdoctoral Science Foundation(2012M511561)
文摘The active contour model based on local image fitting (LIF) energy is an effective method to deal with intensity inhomo- geneities, but it always conflicts with the local minimum problem because LIF has a nonconvex energy function form. At the same time, the parameters of LIF are hard to be chosen for better per- formance. A global minimization of the adaptive LIF energy model is proposed. The regularized length term which constrains the zero level set is introduced to improve the accuracy of the bound- aries, and a global minimization of the active contour model is presented, in addition, based on the statistical information of the intensity histogram, the standard deviation σ with respect to the truncated Gaussian window is automatically computed according to images. Consequently, the proposed method improves the performance and adaptivity to deal with the intensity inhomo- geneities. Experimental results for synthetic and real images show desirable performance and efficiency of the proposed method.
文摘针对乳腺核磁共振成像的灰度不均匀现象,提出一种融合全局和局部信息的水平集图像分割方法(global and local combined C_V,GLCCV)。该方法将图像的局部信息融入基于全局信息的Chan-Vese(C_V)水平集方法;根据局部灰度拟合均值占全局灰度均值的比例,构造自适应平衡指示函数调节全局和局部效应之间的均衡;加入惩罚项以避免重新初始化。对比实验表明,该水平集分割模型能够有效分割多种灰度不均匀场景下的乳腺MR图像,在抗噪和精确性方面优于融合前的分割方法。