期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
Fault Detection Based on Incremental Locally Linear Embedding for Satellite TX-I 被引量:1
1
作者 程月华 胡国飞 +2 位作者 陆宁云 姜斌 邢琰 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2015年第6期600-609,共10页
A fault detection method based on incremental locally linear embedding(LLE)is presented to improve fault detecting accuracy for satellites with telemetry data.Since conventional LLE algorithm cannot handle incremental... A fault detection method based on incremental locally linear embedding(LLE)is presented to improve fault detecting accuracy for satellites with telemetry data.Since conventional LLE algorithm cannot handle incremental learning,an incremental LLE method is proposed to acquire low-dimensional feature embedded in high-dimensional space.Then,telemetry data of Satellite TX-I are analyzed.Therefore,fault detection are performed by analyzing feature information extracted from the telemetry data with the statistical indexes T2 and squared prediction error(SPE)and SPE.Simulation results verify the fault detection scheme. 展开更多
关键词 incremental locally linear embedding(LLE) telemetry data fault detection dimensionality reduction statistical indexes
下载PDF
Nonlinear fault detection based on locally linear embedding 被引量:8
2
作者 Aimin MIAO Zhihuan SONG +2 位作者 Zhiqiang GE Le ZHOU Qiaojun WEN 《控制理论与应用(英文版)》 EI CSCD 2013年第4期615-622,共8页
In this paper, a new nonlinear fault detection technique based on locally linear embedding (LLE) is developed. LLE can efficiently compute the low-dimensional embedding of the data with the local neighborhood struct... In this paper, a new nonlinear fault detection technique based on locally linear embedding (LLE) is developed. LLE can efficiently compute the low-dimensional embedding of the data with the local neighborhood structure information preserved. In this method, a data-dependent kernel matrix which can reflect the nonlinear data structure is defined. Based on the kernel matrix, the Nystrrm formula makes the mapping extended to the testing data possible. With the kernel view of the LLE, two monitoring statistics are constructed. Together with the out of sample extensions, LLE is used for nonlinear fault detection. Simulation cases were studied to demonstrate the performance of the proposed method. 展开更多
关键词 locally linear embedding Fault detection Nonlinear dimension reduction
原文传递
Recognition algorithm for plant leaves based on adaptive supervised locally linear embedding
3
作者 Yan Qing Liang Dong +1 位作者 Zhang Dongyan Wang Xiu 《International Journal of Agricultural and Biological Engineering》 SCIE EI CAS 2013年第3期52-57,共6页
Locally linear embedding(LLE)algorithm has a distinct deficiency in practical application.It requires users to select the neighborhood parameter,k,which denotes the number of nearest neighbors.A new adaptive method is... Locally linear embedding(LLE)algorithm has a distinct deficiency in practical application.It requires users to select the neighborhood parameter,k,which denotes the number of nearest neighbors.A new adaptive method is presented based on supervised LLE in this article.A similarity measure is formed by utilizing the Fisher projection distance,and then it is used as a threshold to select k.Different samples will produce different k adaptively according to the density of the data distribution.The method is applied to classify plant leaves.The experimental results show that the average classification rate of this new method is up to 92.4%,which is much better than the results from the traditional LLE and supervised LLE. 展开更多
关键词 supervised locally linear embedding manifold learning Fisher projection adaptive neighbors leaf recognition Precision Agriculture
原文传递
LLE-BASED CLASSIFICATION ALGORITHM FOR MMW RADAR TARGET RECOGNITION 被引量:1
4
作者 Luo Lei Li Yuehua Luan Yinghong 《Journal of Electronics(China)》 2010年第1期139-144,共6页
In this paper,a new multiclass classification algorithm is proposed based on the idea of Locally Linear Embedding(LLE),to avoid the defect of traditional manifold learning algorithms,which can not deal with new sample... In this paper,a new multiclass classification algorithm is proposed based on the idea of Locally Linear Embedding(LLE),to avoid the defect of traditional manifold learning algorithms,which can not deal with new sample points.The algorithm defines an error as a criterion by computing a sample's reconstruction weight using LLE.Furthermore,the existence and characteristics of low dimensional manifold in range-profile time-frequency information are explored using manifold learning algorithm,aiming at the problem of target recognition about high range resolution MilliMeter-Wave(MMW) radar.The new algorithm is applied to radar target recognition.The experiment results show the algorithm is efficient.Compared with other classification algorithms,our method improves the recognition precision and the result is not sensitive to input parameters. 展开更多
关键词 Manifold learning locally linear embedding(LLE) Multi-class classification MilliMeter-Wave(MMW) Target recognition
下载PDF
Fast color transfer from multiple images
5
作者 KHAN Asad JIANG Luo +1 位作者 LI Wei LIU Li-gang 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2017年第2期183-200,共18页
Color transfer between images uses the statistics information of image effectively. We present a novel approach of local color transfer between images based on the simple statistics and locally linear embedding. A ske... Color transfer between images uses the statistics information of image effectively. We present a novel approach of local color transfer between images based on the simple statistics and locally linear embedding. A sketching interface is proposed for quickly and easily specifying the color correspondences between target and source image. The user can specify the corre- spondences of local region using scribes, which more accurately transfers the target color to the source image while smoothly preserving the boundaries, and exhibits more natural output results. Our algorithm is not restricted to one-to-one image color transfer and can make use of more than one target images to transfer the color in different regions in the source image. Moreover, our algorithm does not require to choose the same color style and image size between source and target images. We propose the sub-sampling to reduce the computational load. Comparing with other approaches, our algorithm is much better in color blending in the input data. Our approach preserves the other color details in the source image. Various experimental results show that our approach specifies the correspondences of local color region in source and target images. And it expresses the intention of users and generates more actual and natural results of visual effect. 展开更多
关键词 robust color blending color style transfer locally linear embedding edit propagation SUBSAMPLING image processing.
下载PDF
Autonomic failure prediction based on manifold learning for large-scale distributed systems 被引量:2
6
作者 LU Xu WANG Hui-qiang ZHOU Ren-jie GE Bao-yu 《The Journal of China Universities of Posts and Telecommunications》 EI CSCD 2010年第4期116-124,共9页
This article investigates autonomic failure prediction in large-scale distributed systems with nonlinear dimensionality reduction to automatically extract failure features. Most existing methods for failure prediction... This article investigates autonomic failure prediction in large-scale distributed systems with nonlinear dimensionality reduction to automatically extract failure features. Most existing methods for failure prediction focus on building prediction models or heuristic rules by discovering failure patterns, but the process of feature extraction before failure patterns recognition is rarely considered due to the increasing complexity of modern distributed systems. In this work, a novel performance-centric approach to automate failure prediction is proposed based on manifold learning (ML). In addition, the ML algorithm named supervised locally linear embedding (SLLE) is applied to achieve feature extraction. To generalize the dimensionality reduction mapping, the nonlinear mapping approximation and optimization solution is also proposed. In experimental work a file transfer test bed with fault injection is developed which can gather multilevel performance metrics transparently. Based on the runtime monitoring of these metrics, the SLLE method can automatically predict more than 50% of the central processing unit (CPU) and memory failures, and around 70% of the network failure. 展开更多
关键词 failure prediction manifold learning locally linear embedding autonomic computing
原文传递
Facial Expression Recognition of Various Internal States via Manifold Learning 被引量:1
7
作者 Young-Suk Shin 《Journal of Computer Science & Technology》 SCIE EI CSCD 2009年第4期745-752,共8页
Emotions are becoming increasingly important in human-centered interaction architectures. Recognition of facial expressions, which are central to human-computer interactions, seems natural and desirable. However, faci... Emotions are becoming increasingly important in human-centered interaction architectures. Recognition of facial expressions, which are central to human-computer interactions, seems natural and desirable. However, facial expressions include mixed emotions, continuous rather than discrete, which vary from moment to moment. This paper represents a novel method of recognizing facial expressions of various internal states via manifold learning, to achieve the aim of humancentered interaction studies. A critical review of widely used emotion models is described, then, facial expression features of various internal states via the locally linear embedding (LLE) are extracted. The recognition of facial expressions is created with the pleasure-displeasure and arousal-sleep dimensions in a two-dimensional model of emotion. The recognition result of various internal state expressions that mapped to the embedding space via the LLE algorithm can effectively represent the structural nature of the two-dimensional model of emotion. Therefore our research has established that the relationship between facial expressions of various internal states can be elaborated in the two-dimensional model of emotion, via the locally linear embedding algorithm. 展开更多
关键词 manifold learning locally linear embedding dimension model pleasure-displeasure dimension arousal-sleep dimension
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部