This paper gives a new algorithm to enlarge images based on local matching. Its main advantage is capable of preserving the edge of the enlarged image and improving both the subjective effect and the objective effect.
A critical component of visual simultaneous localization and mapping is loop closure detection(LCD),an operation judging whether a robot has come to a pre-visited area.Concretely,given a query image(i.e.,the latest vi...A critical component of visual simultaneous localization and mapping is loop closure detection(LCD),an operation judging whether a robot has come to a pre-visited area.Concretely,given a query image(i.e.,the latest view observed by the robot),it proceeds by first exploring images with similar semantic information,followed by solving the relative relationship between candidate pairs in the 3D space.In this work,a novel appearance-based LCD system is proposed.Specifically,candidate frame selection is conducted via the combination of Superfeatures and aggregated selective match kernel(ASMK).We incorporate an incremental strategy into the vanilla ASMK to make it applied in the LCD task.It is demonstrated that this setting is memory-wise efficient and can achieve remarkable performance.To dig up consistent geometry between image pairs during loop closure verification,we propose a simple yet surprisingly effective feature matching algorithm,termed locality preserving matching with global consensus(LPM-GC).The major objective of LPM-GC is to retain the local neighborhood information of true feature correspondences between candidate pairs,where a global constraint is further designed to effectively remove false correspondences in challenging sceneries,e.g.,containing numerous repetitive structures.Meanwhile,we derive a closed-form solution that enables our approach to provide reliable correspondences within only a few milliseconds.The performance of the proposed approach has been experimentally evaluated on ten publicly available and challenging datasets.Results show that our method can achieve better performance over the state-of-the-art in both feature matching and LCD tasks.We have released our code of LPM-GC at https://github.com/jiayi-ma/LPM-GC.展开更多
This paper introduces an indoor global localization method by extending and matching features. In the proposed method, the environment is partitioned into convex subdivisions. Local extended maps of the subdivisions a...This paper introduces an indoor global localization method by extending and matching features. In the proposed method, the environment is partitioned into convex subdivisions. Local extended maps of the subdivisions are then built by exten- ding features to constitute the local extended map set. While the robot is moving in the environment, the local extended map of the current local environment is established and then matched with the local extended map set. Therefore, global localization in an indoor environment can be achieved by integrating the position and ori- entation matching rates. Both theoretical analysis and comparison experimental result are provided to verify the effectiveness of the proposed method for global localization.展开更多
Stereo matching is a fundamental and crucial problem in computer vision. In the last decades, many researchers have been working on it and made great progress. Generally stereo algorithms can be classified into local ...Stereo matching is a fundamental and crucial problem in computer vision. In the last decades, many researchers have been working on it and made great progress. Generally stereo algorithms can be classified into local methods and global methods. In this paper, the challenges of stereo matching are first introduced, and then we focus on local approaches which have simpler structures and higher efficiency than global ones. Local algorithms generally perform four steps: cost computation, cost aggregation, disparity computation and disparity refinement. Every step is deeply investigated, and most work focuses on cost aggregation. We studied most of the classical local methods and divide them into several classes. The classification well illustrates the development history of local stereo correspondence and shows the essence of local matching along with its important and difficult points. At the end we give the future development trend of local methods.展开更多
A fingerprint matching method based on local relative orientation field is proposed. It extracts local relative orientation field around each minutia for minutiae matching. Local orientation features are also used to ...A fingerprint matching method based on local relative orientation field is proposed. It extracts local relative orientation field around each minutia for minutiae matching. Local orientation features are also used to sorting minutiae in order to speed up searching a minutia when pairing minutiae. The experimental result reveals that this method achieves improved recognition accuracy. Key words fingerprint matching - ridge-based minutiae matching - local relative orientation field - sorting minutiae CLC number TP 391 Foundation item: Supported by the National Natural Science Foundation of China (60373023)Biography: ZHU En (1976-), male, Ph. D candidate, research direction: pattern recognition, image processing and information security.展开更多
Source localization by matched-field processing (MFP) can be accelerated by building a database of Green's functions which however requires a bulk-storage memory. According to the sparsity of the source locations i...Source localization by matched-field processing (MFP) can be accelerated by building a database of Green's functions which however requires a bulk-storage memory. According to the sparsity of the source locations in the search grids of MFP, compressed sensing inspires an approach to reduce the database by introducing a sensing matrix to compress the database. Compressed sensing is further used to estimate the source locations with higher resolution by solving the β -norm optimization problem of the compressed Green's function and the data received by a vertieal/horizontal line array. The method is validated by simulation and is verified with the experimental data.展开更多
文摘This paper gives a new algorithm to enlarge images based on local matching. Its main advantage is capable of preserving the edge of the enlarged image and improving both the subjective effect and the objective effect.
基金supported by the Key Research and Development Program of Hubei Province(2020BAB113)。
文摘A critical component of visual simultaneous localization and mapping is loop closure detection(LCD),an operation judging whether a robot has come to a pre-visited area.Concretely,given a query image(i.e.,the latest view observed by the robot),it proceeds by first exploring images with similar semantic information,followed by solving the relative relationship between candidate pairs in the 3D space.In this work,a novel appearance-based LCD system is proposed.Specifically,candidate frame selection is conducted via the combination of Superfeatures and aggregated selective match kernel(ASMK).We incorporate an incremental strategy into the vanilla ASMK to make it applied in the LCD task.It is demonstrated that this setting is memory-wise efficient and can achieve remarkable performance.To dig up consistent geometry between image pairs during loop closure verification,we propose a simple yet surprisingly effective feature matching algorithm,termed locality preserving matching with global consensus(LPM-GC).The major objective of LPM-GC is to retain the local neighborhood information of true feature correspondences between candidate pairs,where a global constraint is further designed to effectively remove false correspondences in challenging sceneries,e.g.,containing numerous repetitive structures.Meanwhile,we derive a closed-form solution that enables our approach to provide reliable correspondences within only a few milliseconds.The performance of the proposed approach has been experimentally evaluated on ten publicly available and challenging datasets.Results show that our method can achieve better performance over the state-of-the-art in both feature matching and LCD tasks.We have released our code of LPM-GC at https://github.com/jiayi-ma/LPM-GC.
基金supported by the National Natural Science Foundation of China(61375079)
文摘This paper introduces an indoor global localization method by extending and matching features. In the proposed method, the environment is partitioned into convex subdivisions. Local extended maps of the subdivisions are then built by exten- ding features to constitute the local extended map set. While the robot is moving in the environment, the local extended map of the current local environment is established and then matched with the local extended map set. Therefore, global localization in an indoor environment can be achieved by integrating the position and ori- entation matching rates. Both theoretical analysis and comparison experimental result are provided to verify the effectiveness of the proposed method for global localization.
文摘Stereo matching is a fundamental and crucial problem in computer vision. In the last decades, many researchers have been working on it and made great progress. Generally stereo algorithms can be classified into local methods and global methods. In this paper, the challenges of stereo matching are first introduced, and then we focus on local approaches which have simpler structures and higher efficiency than global ones. Local algorithms generally perform four steps: cost computation, cost aggregation, disparity computation and disparity refinement. Every step is deeply investigated, and most work focuses on cost aggregation. We studied most of the classical local methods and divide them into several classes. The classification well illustrates the development history of local stereo correspondence and shows the essence of local matching along with its important and difficult points. At the end we give the future development trend of local methods.
文摘A fingerprint matching method based on local relative orientation field is proposed. It extracts local relative orientation field around each minutia for minutiae matching. Local orientation features are also used to sorting minutiae in order to speed up searching a minutia when pairing minutiae. The experimental result reveals that this method achieves improved recognition accuracy. Key words fingerprint matching - ridge-based minutiae matching - local relative orientation field - sorting minutiae CLC number TP 391 Foundation item: Supported by the National Natural Science Foundation of China (60373023)Biography: ZHU En (1976-), male, Ph. D candidate, research direction: pattern recognition, image processing and information security.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11374271 and 11374270the Fundamental Research Funds for the Central Universities under Grant No 201513038
文摘Source localization by matched-field processing (MFP) can be accelerated by building a database of Green's functions which however requires a bulk-storage memory. According to the sparsity of the source locations in the search grids of MFP, compressed sensing inspires an approach to reduce the database by introducing a sensing matrix to compress the database. Compressed sensing is further used to estimate the source locations with higher resolution by solving the β -norm optimization problem of the compressed Green's function and the data received by a vertieal/horizontal line array. The method is validated by simulation and is verified with the experimental data.