Rotating machinery is widely used in the industry.They are vulnerable to many kinds of damages especially for those working under tough and time-varying operation conditions.Early detection of these damages is importa...Rotating machinery is widely used in the industry.They are vulnerable to many kinds of damages especially for those working under tough and time-varying operation conditions.Early detection of these damages is important,otherwise,they may lead to large economic loss even a catastrophe.Many signal processing methods have been developed for fault diagnosis of the rotating machinery.Local mean decomposition(LMD)is an adaptive mode decomposition method that can decompose a complicated signal into a series of mono-components,namely product functions(PFs).In recent years,many researchers have adopted LMD in fault detection and diagnosis of rotating machines.We give a comprehensive review of LMD in fault detection and diagnosis of rotating machines.First,the LMD is described.The advantages,disadvantages and some improved LMD methods are presented.Then,a comprehensive review on applications of LMD in fault diagnosis of the rotating machinery is given.The review is divided into four parts:fault diagnosis of gears,fault diagnosis of rotors,fault diagnosis of bearings,and other LMD applications.In each of these four parts,a review is given to applications applying the LMD,improved LMD,and LMD-based combination methods,respectively.We give a summary of this review and some future potential topics at the end.展开更多
振动信号分析是轴承故障诊断中的重要技术手段之一。变转速工况下的滚动轴承振动信号是典型的非平稳信号,并且在转频变化较小的工况中还存在噪声干扰的问题,使传统的时频分析技术难以应用。为解决该问题,提出了一种基于经验最优包络(emp...振动信号分析是轴承故障诊断中的重要技术手段之一。变转速工况下的滚动轴承振动信号是典型的非平稳信号,并且在转频变化较小的工况中还存在噪声干扰的问题,使传统的时频分析技术难以应用。为解决该问题,提出了一种基于经验最优包络(empirical optimal envelope,EOE)的局部均值分解(local mean decomposition,LMD)和采用分段线性插值的计算阶次跟踪(computing order tracking,COT)算法相结合的故障诊断方法。首先,确定低通滤波器的截止频率和滤波阶数,对滚动轴承振动信号进行滤波,并对滤波后的包络信号进行COT,以获得角域平稳信号。然后,利用EOE_LMD对重采样后的平稳信号进行处理,得到若干乘积函数(product function,PF)分量。最后,通过计算各分量的信息熵和相关系数,选取合适的分量进行阶次分析,以判断变转速滚动轴承的故障类型。结果表明,该方法可以消除转速波动对故障特征提取的影响,在不同转速变化条件下对滚动轴承具有良好的故障诊断能力。展开更多
Considering the instability of the output power of photovoltaic(PV)generation system,to improve the power regulation ability of PV power during grid-connected operation,based on the quantitative analysis of meteorolog...Considering the instability of the output power of photovoltaic(PV)generation system,to improve the power regulation ability of PV power during grid-connected operation,based on the quantitative analysis of meteorological conditions,a short-term prediction method of PV power based on LMD-EE-ESN with iterative error correction was proposed.Firstly,through the fuzzy clustering processing of meteorological conditions,taking the power curves of PV power generation in sunny,rainy or snowy,cloudy,and changeable weather as the reference,the local mean decomposition(LMD)was carried out respectively,and their energy entropy(EE)was taken as the meteorological characteristics.Then,the historical generation power series was decomposed by LMD algorithm,and the hierarchical prediction of the power curve was realized by echo state network(ESN)prediction algorithm combined with meteorological characteristics.Finally,the iterative error theory was applied to the correction of power prediction results.The analysis of the historical data in the PV power generation system shows that this method avoids the influence of meteorological conditions in the short-term prediction of PV output power,and improves the accuracy of power prediction on the condition of hierarchical prediction and iterative error correction.展开更多
Bearing fault signal is nonlinear and non-stationary, therefore proposed a fault feature extraction method based on wavelet packet decomposition (WPD) and local mean decomposition (LMD) permutation entropy, which ...Bearing fault signal is nonlinear and non-stationary, therefore proposed a fault feature extraction method based on wavelet packet decomposition (WPD) and local mean decomposition (LMD) permutation entropy, which is based on the support vector machine (SVM) as the feature vector pattern recognition device Firstly, the wavelet packet analysis method is used to denoise the original vibration signal, and the frequency band division and signal reconstruction are carried out according to the characteristic frequency. Then the decomposition of the reconstructed signal is decomposed into a number of product functions (PE) by the local mean decomposition (LMD) , and the permutation entropy of the PF component which contains the main fault information is calculated to realize the feature quantization of the PF component. Finally, the entropy feature vector input multi-classification SVM, which is used to determine the type of fault and fault degree of bearing The experimental results show that the recognition rate of rolling bearing fault diagnosis is 95%. Comparing with other methods, the present this method can effectively extract the features of bearing fault and has a higher recognition accuracy展开更多
局部均值分解(Local Mean Decomposition,简称LMD)方法是一种新的自适应时频分析方法,并成功运用于滚动轴承故障诊断中,但对噪声比较敏感。为消除噪声对诊断结果的影响,提出了一种小波包降噪与LMD相结合的滚动轴承故障诊断方法。该方法...局部均值分解(Local Mean Decomposition,简称LMD)方法是一种新的自适应时频分析方法,并成功运用于滚动轴承故障诊断中,但对噪声比较敏感。为消除噪声对诊断结果的影响,提出了一种小波包降噪与LMD相结合的滚动轴承故障诊断方法。该方法首先利用小波包去除信号中的噪声,然后,进行LMD分解,并将分解后PF分量与分解前信号的相关系数作为判断标准,剔除多余低频PF分量,最后,选取有效PF集进行功率谱分析,提取故障特征。通过仿真数据和真实滚动轴承数据的故障诊断实验,其结果验证了该方法的有效性。展开更多
针对齿轮故障振动信号的非平稳调制特性以及传统共振解调方法不易确定滤波器参数的缺点,提出了一种基于局部均值分解(Local Mean Decomposition,LMD)时频分析的谱峭度(Spectrum Kurtosis,SK)分析方法,并将其应用于齿轮故障诊断。该方法...针对齿轮故障振动信号的非平稳调制特性以及传统共振解调方法不易确定滤波器参数的缺点,提出了一种基于局部均值分解(Local Mean Decomposition,LMD)时频分析的谱峭度(Spectrum Kurtosis,SK)分析方法,并将其应用于齿轮故障诊断。该方法首先利用LMD对齿轮故障振动信号进行分析得到时频分布,然后将时频分布按照不同的尺度分成若干不同的频段,计算每一频段内信号的谱峭度值,并得到相应的峭度图,再根据峭度最大原则选取滤波频段,对滤波后的信号进行包络分析以获得齿轮振动信号的故障信息。利用该方法分别对仿真信号以及齿轮故障振动信号进行了分析,结果表明,基于LMD的谱峭度分析方法能够有效地提取齿轮故障振动信号特征。展开更多
为了提取多分量调幅调频信号的幅值和频率信息,提出了基于局部均值分解(local mean decomposition,简称LMD)的能量算子解调机械故障诊断方法。该方法先利用LMD将机械调制信号分解成若干个乘积函数(production function,简称PF)分量,然...为了提取多分量调幅调频信号的幅值和频率信息,提出了基于局部均值分解(local mean decomposition,简称LMD)的能量算子解调机械故障诊断方法。该方法先利用LMD将机械调制信号分解成若干个乘积函数(production function,简称PF)分量,然后对每一个PF分量进行能量算子解调,获得信号的幅值和频率信息进行故障诊断。利用该方法对仿真信号以及轴承和齿轮故障振动信号进行实验研究的结果表明,基于LMD的能量算子解调方法能够有效地提取机械故障振动信号特征。展开更多
基金supported by the National Natural Science Foundation of China(5180543471771186+4 种基金71631001)the Postdoctoral Innovative Talent Plan of China(BX20180257)the Postdoctoral Science Funds of China(2018M641021)the Key Research Program of Shaanxi Province(2019KW-017)the Natural Science and Engineering Research Council of Canada(RGPIN-2019-05361)
文摘Rotating machinery is widely used in the industry.They are vulnerable to many kinds of damages especially for those working under tough and time-varying operation conditions.Early detection of these damages is important,otherwise,they may lead to large economic loss even a catastrophe.Many signal processing methods have been developed for fault diagnosis of the rotating machinery.Local mean decomposition(LMD)is an adaptive mode decomposition method that can decompose a complicated signal into a series of mono-components,namely product functions(PFs).In recent years,many researchers have adopted LMD in fault detection and diagnosis of rotating machines.We give a comprehensive review of LMD in fault detection and diagnosis of rotating machines.First,the LMD is described.The advantages,disadvantages and some improved LMD methods are presented.Then,a comprehensive review on applications of LMD in fault diagnosis of the rotating machinery is given.The review is divided into four parts:fault diagnosis of gears,fault diagnosis of rotors,fault diagnosis of bearings,and other LMD applications.In each of these four parts,a review is given to applications applying the LMD,improved LMD,and LMD-based combination methods,respectively.We give a summary of this review and some future potential topics at the end.
文摘振动信号分析是轴承故障诊断中的重要技术手段之一。变转速工况下的滚动轴承振动信号是典型的非平稳信号,并且在转频变化较小的工况中还存在噪声干扰的问题,使传统的时频分析技术难以应用。为解决该问题,提出了一种基于经验最优包络(empirical optimal envelope,EOE)的局部均值分解(local mean decomposition,LMD)和采用分段线性插值的计算阶次跟踪(computing order tracking,COT)算法相结合的故障诊断方法。首先,确定低通滤波器的截止频率和滤波阶数,对滚动轴承振动信号进行滤波,并对滤波后的包络信号进行COT,以获得角域平稳信号。然后,利用EOE_LMD对重采样后的平稳信号进行处理,得到若干乘积函数(product function,PF)分量。最后,通过计算各分量的信息熵和相关系数,选取合适的分量进行阶次分析,以判断变转速滚动轴承的故障类型。结果表明,该方法可以消除转速波动对故障特征提取的影响,在不同转速变化条件下对滚动轴承具有良好的故障诊断能力。
基金supported by National Natural Science Foundation of China(No.516667017).
文摘Considering the instability of the output power of photovoltaic(PV)generation system,to improve the power regulation ability of PV power during grid-connected operation,based on the quantitative analysis of meteorological conditions,a short-term prediction method of PV power based on LMD-EE-ESN with iterative error correction was proposed.Firstly,through the fuzzy clustering processing of meteorological conditions,taking the power curves of PV power generation in sunny,rainy or snowy,cloudy,and changeable weather as the reference,the local mean decomposition(LMD)was carried out respectively,and their energy entropy(EE)was taken as the meteorological characteristics.Then,the historical generation power series was decomposed by LMD algorithm,and the hierarchical prediction of the power curve was realized by echo state network(ESN)prediction algorithm combined with meteorological characteristics.Finally,the iterative error theory was applied to the correction of power prediction results.The analysis of the historical data in the PV power generation system shows that this method avoids the influence of meteorological conditions in the short-term prediction of PV output power,and improves the accuracy of power prediction on the condition of hierarchical prediction and iterative error correction.
基金supported by the National Natural Science Foundation of China(51375405)Independent Project of the State Key Laboratory of Traction Power(2016TP-10)
文摘Bearing fault signal is nonlinear and non-stationary, therefore proposed a fault feature extraction method based on wavelet packet decomposition (WPD) and local mean decomposition (LMD) permutation entropy, which is based on the support vector machine (SVM) as the feature vector pattern recognition device Firstly, the wavelet packet analysis method is used to denoise the original vibration signal, and the frequency band division and signal reconstruction are carried out according to the characteristic frequency. Then the decomposition of the reconstructed signal is decomposed into a number of product functions (PE) by the local mean decomposition (LMD) , and the permutation entropy of the PF component which contains the main fault information is calculated to realize the feature quantization of the PF component. Finally, the entropy feature vector input multi-classification SVM, which is used to determine the type of fault and fault degree of bearing The experimental results show that the recognition rate of rolling bearing fault diagnosis is 95%. Comparing with other methods, the present this method can effectively extract the features of bearing fault and has a higher recognition accuracy
文摘局部均值分解(Local Mean Decomposition,简称LMD)方法是一种新的自适应时频分析方法,并成功运用于滚动轴承故障诊断中,但对噪声比较敏感。为消除噪声对诊断结果的影响,提出了一种小波包降噪与LMD相结合的滚动轴承故障诊断方法。该方法首先利用小波包去除信号中的噪声,然后,进行LMD分解,并将分解后PF分量与分解前信号的相关系数作为判断标准,剔除多余低频PF分量,最后,选取有效PF集进行功率谱分析,提取故障特征。通过仿真数据和真实滚动轴承数据的故障诊断实验,其结果验证了该方法的有效性。
文摘针对齿轮故障振动信号的非平稳调制特性以及传统共振解调方法不易确定滤波器参数的缺点,提出了一种基于局部均值分解(Local Mean Decomposition,LMD)时频分析的谱峭度(Spectrum Kurtosis,SK)分析方法,并将其应用于齿轮故障诊断。该方法首先利用LMD对齿轮故障振动信号进行分析得到时频分布,然后将时频分布按照不同的尺度分成若干不同的频段,计算每一频段内信号的谱峭度值,并得到相应的峭度图,再根据峭度最大原则选取滤波频段,对滤波后的信号进行包络分析以获得齿轮振动信号的故障信息。利用该方法分别对仿真信号以及齿轮故障振动信号进行了分析,结果表明,基于LMD的谱峭度分析方法能够有效地提取齿轮故障振动信号特征。
文摘为了提取多分量调幅调频信号的幅值和频率信息,提出了基于局部均值分解(local mean decomposition,简称LMD)的能量算子解调机械故障诊断方法。该方法先利用LMD将机械调制信号分解成若干个乘积函数(production function,简称PF)分量,然后对每一个PF分量进行能量算子解调,获得信号的幅值和频率信息进行故障诊断。利用该方法对仿真信号以及轴承和齿轮故障振动信号进行实验研究的结果表明,基于LMD的能量算子解调方法能够有效地提取机械故障振动信号特征。