In order to overcome the drawbacks of conventional artificial potential fields (APF) based methods for the motion planning problems of mobile robots in dynamic uncertain environments, an artificial coordinating fields...In order to overcome the drawbacks of conventional artificial potential fields (APF) based methods for the motion planning problems of mobile robots in dynamic uncertain environments, an artificial coordinating fields (ACF) based method has been proposed recently. This paper deals with the reachability problem of the ACF, that is, how to design and choose the parameters of the ACF and how the environment should be such that the robot can reach its goal without being trapped in local minima. Some sufficient conditions for these purposes are developed theoretically. Theoretical analyses show that, the ACF can effectively remove local minima in dynamic uncertain environments with V-shape or U-shape obstacles, and guide the mobile robot to reach its goal with some necessary environment constraints and based on the methods provided in this paper to properly choose the parameters of the ACF. Comparisons between the ACF and APF, and simulations are provided to illustrate the advantages of the ACF.展开更多
Image segmentation is vital when analyzing medical images,especially magnetic resonance(MR)images of the brain.Recently,several image segmentation techniques based on multilevel thresholding have been proposed for med...Image segmentation is vital when analyzing medical images,especially magnetic resonance(MR)images of the brain.Recently,several image segmentation techniques based on multilevel thresholding have been proposed for medical image segmentation;however,the algorithms become trapped in local minima and have low convergence speeds,particularly as the number of threshold levels increases.Consequently,in this paper,we develop a new multilevel thresholding image segmentation technique based on the jellyfish search algorithm(JSA)(an optimizer).We modify the JSA to prevent descents into local minima,and we accelerate convergence toward optimal solutions.The improvement is achieved by applying two novel strategies:Rankingbased updating and an adaptive method.Ranking-based updating is used to replace undesirable solutions with other solutions generated by a novel updating scheme that improves the qualities of the removed solutions.We develop a new adaptive strategy to exploit the ability of the JSA to find a best-so-far solution;we allow a small amount of exploration to avoid descents into local minima.The two strategies are integrated with the JSA to produce an improved JSA(IJSA)that optimally thresholds brain MR images.To compare the performances of the IJSA and JSA,seven brain MR images were segmented at threshold levels of 3,4,5,6,7,8,10,15,20,25,and 30.IJSA was compared with several other recent image segmentation algorithms,including the improved and standard marine predator algorithms,the modified salp and standard salp swarm algorithms,the equilibrium optimizer,and the standard JSA in terms of fitness,the Structured Similarity Index Metric(SSIM),the peak signal-to-noise ratio(PSNR),the standard deviation(SD),and the Features Similarity Index Metric(FSIM).The experimental outcomes and the Wilcoxon rank-sum test demonstrate the superiority of the proposed algorithm in terms of the FSIM,the PSNR,the objective values,and the SD;in terms of the SSIM,IJSA was competitive with the others.展开更多
Due to the requirements for mobile robots to search or rescue in unknown environments,reactive navigation which plays an essential role in these applications has attracted increasing interest.However,most existing rea...Due to the requirements for mobile robots to search or rescue in unknown environments,reactive navigation which plays an essential role in these applications has attracted increasing interest.However,most existing reactive methods are vulnerable to local minima in the absence of prior knowledge about the environment.This paper aims to address the local minimum problem by employing the proposed boundary gap(BG)based reactive navigation method.Specifically,the narrowest gap extraction algorithm(NGEA)is proposed to eliminate the improper gaps.Meanwhile,we present a new concept called boundary gap which enables the robot to follow the obstacle boundary and then get rid of local minima.Moreover,in order to enhance the smoothness of generated trajectories,we take the robot dynamics into consideration by using the modified dynamic window approach(DWA).Simulation and experimental results show the superiority of our method in avoiding local minima and improving the smoothness.展开更多
In order to overcome the system non-linearity and uncertainty inherent in magnetic bearing systems, a GA(genetic algnrithm)-based PID neural network controller is designed and trained tO emulate the operation of a c...In order to overcome the system non-linearity and uncertainty inherent in magnetic bearing systems, a GA(genetic algnrithm)-based PID neural network controller is designed and trained tO emulate the operation of a complete system (magnetic bearing, controller, and power amplifiers). The feasibility of using a neural network to control nonlinear magnetic bearing systems with unknown dynamics is demonstrated. The key concept of the control scheme is to use GA to evaluate the candidate solutions (chromosomes), increase the generalization ability of PID neural network and avoid suffering from the local minima problem in network learning due to the use of gradient descent learning method. The simulation results show that the proposed architecture provides well robust performance and better reinforcement learning capability in controlling magnetic bearing systems.展开更多
A novel gravity assist space pruning(GASP)algorithm based on image tools is proposed for solving interplanetary trajectory optimization problem.Compared with traditional GASP algorithm,the concept of image is introduc...A novel gravity assist space pruning(GASP)algorithm based on image tools is proposed for solving interplanetary trajectory optimization problem.Compared with traditional GASP algorithm,the concept of image is introduced to avoid missing interesting solutions with appropriate number of function evaluations.Image tools allow us to evaluate the objective function in regions in place of points and provide an effective way to evaluate the forward and backward constraints for the multi-gravity assist trajectory optimization problem.Since the interesting solutions of the interplanetary trajectory optimization problem are often clustered in a small portion of the search space rather than being overall evenly distributed,the regionwise evaluations with image tools make the little large interval with the proper Lipschitzian tolerances sampling effective.The detailed steps of the proposed method are presented and two examples including Earth Venus Mars(EVM)transfer and Earth Venus Venus Earth Jupiter Saturn(EVVEJS)transfer are given.Finally,a comparison with solutions given by the literature demonstrates the effectiveness of the proposed method.展开更多
AC impedance spectroscopy in pure room temperature ionic liquids (RTILs) and RTIL-water mixture was measured at the temperature of range from 30 ℃ down to -30 ℃. The cations of RTILs are N,N-diethyl-N-methyl-N-(2...AC impedance spectroscopy in pure room temperature ionic liquids (RTILs) and RTIL-water mixture was measured at the temperature of range from 30 ℃ down to -30 ℃. The cations of RTILs are N,N-diethyl-N-methyl-N-(2-methoxyethyl) ammonium ([DEME]), 1-ethyl-3-methylimidazolium ([C2mim]) and l-butyl-3-methylimidazolium ([Camim]), the anions are tetrafluoroborate ([BF4]) and bis(trifluoromethanesulfonyl)imide ([TFSI]). In all pure RTILs, there are two kinds of local minima in real part of the AC impedance Zreal. By adding water to [DEME][BF4] (0 mol% 〈 x 〈 94 mol%) at room temperature, the local minimum value at higher frequency decreased remarkably at the fixed frequency with increasing water concentration. Above 94 mol% H20, a quite different profile of the AC impedance spectroscopy was obtained. In addition to Zreal. temperature dependence of an imaginary part of the impedance Zimag had an isosbestic point below 94 mol%. The isosbestic point disappeared above 94 mol%. The isosbestic point in Zing reveals an interaction between [DEME][BFa] and H2O.展开更多
This article proposes a novel fuzzy virtual force (FVF) method for unmanned aerial vehicle (UAV) path planning in compli-cated environment. An integrated mathematical model of UAV path planning based on virtual fo...This article proposes a novel fuzzy virtual force (FVF) method for unmanned aerial vehicle (UAV) path planning in compli-cated environment. An integrated mathematical model of UAV path planning based on virtual force (VF) is constructed and the corresponding optimal solving method under the given indicators is presented. Specifically,a fixed step method is developed to reduce computational cost and the reachable condition of path planning is proved. The Bayesian belief network and fuzzy logic reasoning theories are applied to setting the path planning parameters adaptively,which can reflect the battlefield situation dy-namically and precisely. A new way of combining threats is proposed to solve the local minima problem completely. Simulation results prove the feasibility and usefulness of using FVF for UAV path planning. Performance comparisons between the FVF method and the A* search algorithm demonstrate that the proposed approach is fast enough to meet the real-time requirements of the online path planning problems.展开更多
A robust iteration-dependent least mean square(RIDLMS)algorithm-based fundamental extractor is developed to estimate the fundamental components of the load current for a four-wire DSTATCOM with a nonlinear load.The av...A robust iteration-dependent least mean square(RIDLMS)algorithm-based fundamental extractor is developed to estimate the fundamental components of the load current for a four-wire DSTATCOM with a nonlinear load.The averaging parameter for calculating the variable step size is iteration dependent and uses variable tuning parameters.Rather than using the current value,the previous learning rate was used in this method to achieve a more adaptive solution.This additional control factor aids in determining the exact learning rate,resulting in reliable and convergent outcomes.Its faster convergence rate and the avoidance of local minima make it advantageous.The estimation of the PI controller gains is achieved through a self-adaptive multi-population algorithm.The adaptive change in the group number will increase exploration and exploitation.The self-adaptive nature of the algorithm was used to determine the subpopulation number needed according to the fitness value.The main advantage of this self-adaptive nature is the multi-population spread throughout the search space for a better optimal solution.The estimated gains of the PI controllers are used for the DC bus and AC terminal voltage error minimization.The RIDLMS-based control with PI gains obtained using the proposed optimization algorithm showed better power quality performance.The considered RIDLMS-supported control was demonstrated experimentally using d-SPACE-1104.展开更多
基金This paper was partly supported by the National Natural Science Foundation (No.60131160741,60334010) of China.
文摘In order to overcome the drawbacks of conventional artificial potential fields (APF) based methods for the motion planning problems of mobile robots in dynamic uncertain environments, an artificial coordinating fields (ACF) based method has been proposed recently. This paper deals with the reachability problem of the ACF, that is, how to design and choose the parameters of the ACF and how the environment should be such that the robot can reach its goal without being trapped in local minima. Some sufficient conditions for these purposes are developed theoretically. Theoretical analyses show that, the ACF can effectively remove local minima in dynamic uncertain environments with V-shape or U-shape obstacles, and guide the mobile robot to reach its goal with some necessary environment constraints and based on the methods provided in this paper to properly choose the parameters of the ACF. Comparisons between the ACF and APF, and simulations are provided to illustrate the advantages of the ACF.
基金This research was supported by the Korea Institute for Advancement of Technology(KIAT)grant funded by the Korea Government(MOTIE)(P0012724,The Competency Development Program for Industry Specialist)and the Soonchunhyang University Research Fund.
文摘Image segmentation is vital when analyzing medical images,especially magnetic resonance(MR)images of the brain.Recently,several image segmentation techniques based on multilevel thresholding have been proposed for medical image segmentation;however,the algorithms become trapped in local minima and have low convergence speeds,particularly as the number of threshold levels increases.Consequently,in this paper,we develop a new multilevel thresholding image segmentation technique based on the jellyfish search algorithm(JSA)(an optimizer).We modify the JSA to prevent descents into local minima,and we accelerate convergence toward optimal solutions.The improvement is achieved by applying two novel strategies:Rankingbased updating and an adaptive method.Ranking-based updating is used to replace undesirable solutions with other solutions generated by a novel updating scheme that improves the qualities of the removed solutions.We develop a new adaptive strategy to exploit the ability of the JSA to find a best-so-far solution;we allow a small amount of exploration to avoid descents into local minima.The two strategies are integrated with the JSA to produce an improved JSA(IJSA)that optimally thresholds brain MR images.To compare the performances of the IJSA and JSA,seven brain MR images were segmented at threshold levels of 3,4,5,6,7,8,10,15,20,25,and 30.IJSA was compared with several other recent image segmentation algorithms,including the improved and standard marine predator algorithms,the modified salp and standard salp swarm algorithms,the equilibrium optimizer,and the standard JSA in terms of fitness,the Structured Similarity Index Metric(SSIM),the peak signal-to-noise ratio(PSNR),the standard deviation(SD),and the Features Similarity Index Metric(FSIM).The experimental outcomes and the Wilcoxon rank-sum test demonstrate the superiority of the proposed algorithm in terms of the FSIM,the PSNR,the objective values,and the SD;in terms of the SSIM,IJSA was competitive with the others.
基金supported in part by the National Natural Science Foundation of China(61922076,61873252)in part by the Fok Ying-Tong Education Foundation for Young Teachers in Higher Education Institutions of China(161059)。
文摘Due to the requirements for mobile robots to search or rescue in unknown environments,reactive navigation which plays an essential role in these applications has attracted increasing interest.However,most existing reactive methods are vulnerable to local minima in the absence of prior knowledge about the environment.This paper aims to address the local minimum problem by employing the proposed boundary gap(BG)based reactive navigation method.Specifically,the narrowest gap extraction algorithm(NGEA)is proposed to eliminate the improper gaps.Meanwhile,we present a new concept called boundary gap which enables the robot to follow the obstacle boundary and then get rid of local minima.Moreover,in order to enhance the smoothness of generated trajectories,we take the robot dynamics into consideration by using the modified dynamic window approach(DWA).Simulation and experimental results show the superiority of our method in avoiding local minima and improving the smoothness.
基金This project is supported by National Natural Science Foundation of China (No. 5880203).
文摘In order to overcome the system non-linearity and uncertainty inherent in magnetic bearing systems, a GA(genetic algnrithm)-based PID neural network controller is designed and trained tO emulate the operation of a complete system (magnetic bearing, controller, and power amplifiers). The feasibility of using a neural network to control nonlinear magnetic bearing systems with unknown dynamics is demonstrated. The key concept of the control scheme is to use GA to evaluate the candidate solutions (chromosomes), increase the generalization ability of PID neural network and avoid suffering from the local minima problem in network learning due to the use of gradient descent learning method. The simulation results show that the proposed architecture provides well robust performance and better reinforcement learning capability in controlling magnetic bearing systems.
基金supported by the National High Technology Research and Development Program (863)of China (2012AA121602)the National Natural Science Foundation of China(11078001)+1 种基金the Specialized Research Fund for the Doctoral Program of Higher Education of China (20133218120037)the Fundamental Research Funds for the Central Universities under Grant(NS2014091)
文摘A novel gravity assist space pruning(GASP)algorithm based on image tools is proposed for solving interplanetary trajectory optimization problem.Compared with traditional GASP algorithm,the concept of image is introduced to avoid missing interesting solutions with appropriate number of function evaluations.Image tools allow us to evaluate the objective function in regions in place of points and provide an effective way to evaluate the forward and backward constraints for the multi-gravity assist trajectory optimization problem.Since the interesting solutions of the interplanetary trajectory optimization problem are often clustered in a small portion of the search space rather than being overall evenly distributed,the regionwise evaluations with image tools make the little large interval with the proper Lipschitzian tolerances sampling effective.The detailed steps of the proposed method are presented and two examples including Earth Venus Mars(EVM)transfer and Earth Venus Venus Earth Jupiter Saturn(EVVEJS)transfer are given.Finally,a comparison with solutions given by the literature demonstrates the effectiveness of the proposed method.
文摘AC impedance spectroscopy in pure room temperature ionic liquids (RTILs) and RTIL-water mixture was measured at the temperature of range from 30 ℃ down to -30 ℃. The cations of RTILs are N,N-diethyl-N-methyl-N-(2-methoxyethyl) ammonium ([DEME]), 1-ethyl-3-methylimidazolium ([C2mim]) and l-butyl-3-methylimidazolium ([Camim]), the anions are tetrafluoroborate ([BF4]) and bis(trifluoromethanesulfonyl)imide ([TFSI]). In all pure RTILs, there are two kinds of local minima in real part of the AC impedance Zreal. By adding water to [DEME][BF4] (0 mol% 〈 x 〈 94 mol%) at room temperature, the local minimum value at higher frequency decreased remarkably at the fixed frequency with increasing water concentration. Above 94 mol% H20, a quite different profile of the AC impedance spectroscopy was obtained. In addition to Zreal. temperature dependence of an imaginary part of the impedance Zimag had an isosbestic point below 94 mol%. The isosbestic point disappeared above 94 mol%. The isosbestic point in Zing reveals an interaction between [DEME][BFa] and H2O.
基金National Natural Science Foundation of China (60975073)Aeronautical Science Foundation of China (2008ZC13011)+1 种基金Research Foundation for Doctoral Program of Higher Education of China (20091102110006)Fundamental Research Funds for the Central Universities
文摘This article proposes a novel fuzzy virtual force (FVF) method for unmanned aerial vehicle (UAV) path planning in compli-cated environment. An integrated mathematical model of UAV path planning based on virtual force (VF) is constructed and the corresponding optimal solving method under the given indicators is presented. Specifically,a fixed step method is developed to reduce computational cost and the reachable condition of path planning is proved. The Bayesian belief network and fuzzy logic reasoning theories are applied to setting the path planning parameters adaptively,which can reflect the battlefield situation dy-namically and precisely. A new way of combining threats is proposed to solve the local minima problem completely. Simulation results prove the feasibility and usefulness of using FVF for UAV path planning. Performance comparisons between the FVF method and the A* search algorithm demonstrate that the proposed approach is fast enough to meet the real-time requirements of the online path planning problems.
基金Supported by Science and Engineering Research Board-New Delhi Project(Extra Mural Research Funding Scheme),Grant No.SB/S3/EECE/030/2016.
文摘A robust iteration-dependent least mean square(RIDLMS)algorithm-based fundamental extractor is developed to estimate the fundamental components of the load current for a four-wire DSTATCOM with a nonlinear load.The averaging parameter for calculating the variable step size is iteration dependent and uses variable tuning parameters.Rather than using the current value,the previous learning rate was used in this method to achieve a more adaptive solution.This additional control factor aids in determining the exact learning rate,resulting in reliable and convergent outcomes.Its faster convergence rate and the avoidance of local minima make it advantageous.The estimation of the PI controller gains is achieved through a self-adaptive multi-population algorithm.The adaptive change in the group number will increase exploration and exploitation.The self-adaptive nature of the algorithm was used to determine the subpopulation number needed according to the fitness value.The main advantage of this self-adaptive nature is the multi-population spread throughout the search space for a better optimal solution.The estimated gains of the PI controllers are used for the DC bus and AC terminal voltage error minimization.The RIDLMS-based control with PI gains obtained using the proposed optimization algorithm showed better power quality performance.The considered RIDLMS-supported control was demonstrated experimentally using d-SPACE-1104.