Ultrasonic guided wave is an attractive monitoring technique for large-scale structures but is vulnerable to changes in environmental and operational conditions(EOC),which are inevitable in the normal inspection of ci...Ultrasonic guided wave is an attractive monitoring technique for large-scale structures but is vulnerable to changes in environmental and operational conditions(EOC),which are inevitable in the normal inspection of civil and mechanical structures.This paper thus presents a robust guided wave-based method for damage detection and localization under complex environmental conditions by singular value decomposition-based feature extraction and one-dimensional convolutional neural network(1D-CNN).After singular value decomposition-based feature extraction processing,a temporal robust damage index(TRDI)is extracted,and the effect of EOCs is well removed.Hence,even for the signals with a very large temperature-varying range and low signal-to-noise ratios(SNRs),the final damage detection and localization accuracy retain perfect 100%.Verifications are conducted on two different experimental datasets.The first dataset consists of guided wave signals collected from a thin aluminum plate with artificial noises,and the second is a publicly available experimental dataset of guided wave signals acquired on a composite plate with a temperature ranging from 20℃to 60℃.It is demonstrated that the proposed method can detect and localize the damage accurately and rapidly,showing great potential for application in complex and unknown EOC.展开更多
The perturbational reanalysis technique of matrix singular value decomposition is applicable to many theoretical and practical problems in mathematics, mechanics, control theory, engineering, etc.. An indirect perturb...The perturbational reanalysis technique of matrix singular value decomposition is applicable to many theoretical and practical problems in mathematics, mechanics, control theory, engineering, etc.. An indirect perturbation method has previously been proposed by the author in this journal, and now the direct perturbation method has also been presented in this paper. The second-order perturbation results of non-repeated singular values and the corresponding left and right singular vectors are obtained. The results can meet the general needs of most problems of various practical applications. A numerical example is presented to demonstrate the effectiveness of the direct perturbation method.展开更多
The perturbation method for the reanalysis of the singular value decomposition (SVD) of general real matrices is presented in this paper. This is a simple but efficient reanalysis technique for the SVD, which is of gr...The perturbation method for the reanalysis of the singular value decomposition (SVD) of general real matrices is presented in this paper. This is a simple but efficient reanalysis technique for the SVD, which is of great worth to enhance computational efficiency of the iterative analysis problems that require matrix singular value decomposition repeatedly. The asymptotic estimate formulas for the singular values and the corresponding left and right singular vectors up to second-order perturbation components are derived. At the end of the paper the way to extend the perturbation method to the case of general complex matrices is advanced.展开更多
The truncated singular value decomposition has been widely used in many areas of science including engineering,and statistics,etc.In this paper,the original truncated complex singular value decomposition problem is fo...The truncated singular value decomposition has been widely used in many areas of science including engineering,and statistics,etc.In this paper,the original truncated complex singular value decomposition problem is formulated as a Riemannian optimiza-tion problem on a product of two complex Stiefel manifolds,a practical algorithm based on the generic Riemannian trust-region method of Absil et al.is presented to solve the underlying problem,which enjoys the global convergence and local superlinear conver-gence rate.Numerical experiments are provided to illustrate the efficiency of the proposed method.Comparisons with some classical Riemannian gradient-type methods,the existing Riemannian version of limited-memory BFGS algorithms in the MATLAB toolbox Manopt and the Riemannian manifold optimization library ROPTLIB,and some latest infeasible methods for solving manifold optimization problems,are also provided to show the merits of the proposed approach.展开更多
The current manuscript makes use of the prominent iterative procedure, called the Adomian Decomposition Method (ADM), to tackle some important special differential equations. The equations of curiosity in this study a...The current manuscript makes use of the prominent iterative procedure, called the Adomian Decomposition Method (ADM), to tackle some important special differential equations. The equations of curiosity in this study are the singular equations that arise in many physical science applications. Thus, through the application of the ADM, a generalized recursive scheme was successfully derived and further utilized to obtain closed-form solutions for the models under consideration. The method is, indeed, fascinating as respective exact analytical solutions are accurately acquired with only a small number of iterations.展开更多
The non-local means (NLM) denoising method replaces each pixel by the weighted average of pixels with the sur-rounding neighborhoods. In this paper we employ a cosine weighting function instead of the original exponen...The non-local means (NLM) denoising method replaces each pixel by the weighted average of pixels with the sur-rounding neighborhoods. In this paper we employ a cosine weighting function instead of the original exponential func-tion to improve the efficiency of the NLM denoising method. The cosine function outperforms in the high level noise more than low level noise. To increase the performance more in the low level noise we calculate the neighborhood si-milarity weights in a lower-dimensional subspace using singular value decomposition (SVD). Experimental compari-sons between the proposed modifications against the original NLM algorithm demonstrate its superior denoising per-formance in terms of peak signal to noise ratio (PSNR) and histogram, using various test images corrupted by additive white Gaussian noise (AWGN).展开更多
针对工业机械设备实时监测中不可控因素导致的振动信号数据缺失问题,提出一种基于自适应二次临近项交替方向乘子算法(adaptive quadratic proximity-alternating direction method of multipliers, AQ-ADMM)的压缩感知缺失信号重构方法...针对工业机械设备实时监测中不可控因素导致的振动信号数据缺失问题,提出一种基于自适应二次临近项交替方向乘子算法(adaptive quadratic proximity-alternating direction method of multipliers, AQ-ADMM)的压缩感知缺失信号重构方法。AQ-ADMM算法在经典交替方向乘子算法算法迭代过程中添加二次临近项,且能够自适应选取惩罚参数。首先在数据中心建立信号参考数据库用于构造初始字典,然后将K-奇异值分解(K-singular value decomposition, K-SVD)字典学习算法和AQ-ADMM算法结合重构缺失信号。对仿真信号和两种真实轴承信号数据集添加高斯白噪声后作为样本,试验结果表明当信号压缩率在50%~70%时,所提方法性能指标明显优于其它传统方法,在重构信号的同时实现了对含缺失数据机械振动信号的快速精确修复。展开更多
应力强度因子是预测荷载作用下结构中裂纹产生和扩展的重要参数。半解析的比例边界有限元法结合了有限元和边界元法的优势,在裂纹尖端或存在奇异应力的区域不需要局部网格细化,可以直接提取应力强度因子。在比例边界有限元法计算应力强...应力强度因子是预测荷载作用下结构中裂纹产生和扩展的重要参数。半解析的比例边界有限元法结合了有限元和边界元法的优势,在裂纹尖端或存在奇异应力的区域不需要局部网格细化,可以直接提取应力强度因子。在比例边界有限元法计算应力强度因子的框架下,引入随机参数进行蒙特卡罗模拟(Monte Carlo simulation, MCS),并提出一种新颖的基于MCS的不确定量化分析。与直接的MCS不同,采用奇异值分解构造低阶的子空间,降低系统的自由度,并使用径向基函数对子空间进行近似,通过子空间的线性组合获得新的结构响应,实现基于MCS的快速不确定量化分析。考虑不同荷载状况下,结构形状参数和材料属性参数对应力强度因子的影响,使用改进的MCS计算应力强度因子的统计特征,量化不确定参数对结构的影响。最后通过若干算例验证了该算法的准确性和有效性。展开更多
基金Supported by National Natural Science Foundation of China(Grant Nos.52272433 and 11874110)Jiangsu Provincial Key R&D Program(Grant No.BE2021084)Technical Support Special Project of State Administration for Market Regulation(Grant No.2022YJ11).
文摘Ultrasonic guided wave is an attractive monitoring technique for large-scale structures but is vulnerable to changes in environmental and operational conditions(EOC),which are inevitable in the normal inspection of civil and mechanical structures.This paper thus presents a robust guided wave-based method for damage detection and localization under complex environmental conditions by singular value decomposition-based feature extraction and one-dimensional convolutional neural network(1D-CNN).After singular value decomposition-based feature extraction processing,a temporal robust damage index(TRDI)is extracted,and the effect of EOCs is well removed.Hence,even for the signals with a very large temperature-varying range and low signal-to-noise ratios(SNRs),the final damage detection and localization accuracy retain perfect 100%.Verifications are conducted on two different experimental datasets.The first dataset consists of guided wave signals collected from a thin aluminum plate with artificial noises,and the second is a publicly available experimental dataset of guided wave signals acquired on a composite plate with a temperature ranging from 20℃to 60℃.It is demonstrated that the proposed method can detect and localize the damage accurately and rapidly,showing great potential for application in complex and unknown EOC.
文摘The perturbational reanalysis technique of matrix singular value decomposition is applicable to many theoretical and practical problems in mathematics, mechanics, control theory, engineering, etc.. An indirect perturbation method has previously been proposed by the author in this journal, and now the direct perturbation method has also been presented in this paper. The second-order perturbation results of non-repeated singular values and the corresponding left and right singular vectors are obtained. The results can meet the general needs of most problems of various practical applications. A numerical example is presented to demonstrate the effectiveness of the direct perturbation method.
文摘The perturbation method for the reanalysis of the singular value decomposition (SVD) of general real matrices is presented in this paper. This is a simple but efficient reanalysis technique for the SVD, which is of great worth to enhance computational efficiency of the iterative analysis problems that require matrix singular value decomposition repeatedly. The asymptotic estimate formulas for the singular values and the corresponding left and right singular vectors up to second-order perturbation components are derived. At the end of the paper the way to extend the perturbation method to the case of general complex matrices is advanced.
基金supported by the National Natural Science Foundation of China(Grant Nos.12261026,11961012,12201149)by the Natural Science Foundation of Guangxi Province(Grant Nos.2016GXNSFAA380074,2023GXNSFAA026067)+4 种基金by the Innovation Project of GUET Graduate Education(Grant No.2022YXW01)by the GUET Graduate Innovation Project(Grant No.2022YCXS142)by the Guangxi Key Laboratory of Automatic Detecting Technology and Instruments(Grant Nos.YQ23103,YQ21103,YQ22106)by the Special Fund for Science and Technological Bases and Talents of Guangxi(Grant No.2021AC06001)by the Guizhou Science and Technology Program of Projects(Grant No.ZK2021G339)。
文摘The truncated singular value decomposition has been widely used in many areas of science including engineering,and statistics,etc.In this paper,the original truncated complex singular value decomposition problem is formulated as a Riemannian optimiza-tion problem on a product of two complex Stiefel manifolds,a practical algorithm based on the generic Riemannian trust-region method of Absil et al.is presented to solve the underlying problem,which enjoys the global convergence and local superlinear conver-gence rate.Numerical experiments are provided to illustrate the efficiency of the proposed method.Comparisons with some classical Riemannian gradient-type methods,the existing Riemannian version of limited-memory BFGS algorithms in the MATLAB toolbox Manopt and the Riemannian manifold optimization library ROPTLIB,and some latest infeasible methods for solving manifold optimization problems,are also provided to show the merits of the proposed approach.
文摘The current manuscript makes use of the prominent iterative procedure, called the Adomian Decomposition Method (ADM), to tackle some important special differential equations. The equations of curiosity in this study are the singular equations that arise in many physical science applications. Thus, through the application of the ADM, a generalized recursive scheme was successfully derived and further utilized to obtain closed-form solutions for the models under consideration. The method is, indeed, fascinating as respective exact analytical solutions are accurately acquired with only a small number of iterations.
文摘The non-local means (NLM) denoising method replaces each pixel by the weighted average of pixels with the sur-rounding neighborhoods. In this paper we employ a cosine weighting function instead of the original exponential func-tion to improve the efficiency of the NLM denoising method. The cosine function outperforms in the high level noise more than low level noise. To increase the performance more in the low level noise we calculate the neighborhood si-milarity weights in a lower-dimensional subspace using singular value decomposition (SVD). Experimental compari-sons between the proposed modifications against the original NLM algorithm demonstrate its superior denoising per-formance in terms of peak signal to noise ratio (PSNR) and histogram, using various test images corrupted by additive white Gaussian noise (AWGN).
文摘针对工业机械设备实时监测中不可控因素导致的振动信号数据缺失问题,提出一种基于自适应二次临近项交替方向乘子算法(adaptive quadratic proximity-alternating direction method of multipliers, AQ-ADMM)的压缩感知缺失信号重构方法。AQ-ADMM算法在经典交替方向乘子算法算法迭代过程中添加二次临近项,且能够自适应选取惩罚参数。首先在数据中心建立信号参考数据库用于构造初始字典,然后将K-奇异值分解(K-singular value decomposition, K-SVD)字典学习算法和AQ-ADMM算法结合重构缺失信号。对仿真信号和两种真实轴承信号数据集添加高斯白噪声后作为样本,试验结果表明当信号压缩率在50%~70%时,所提方法性能指标明显优于其它传统方法,在重构信号的同时实现了对含缺失数据机械振动信号的快速精确修复。
文摘应力强度因子是预测荷载作用下结构中裂纹产生和扩展的重要参数。半解析的比例边界有限元法结合了有限元和边界元法的优势,在裂纹尖端或存在奇异应力的区域不需要局部网格细化,可以直接提取应力强度因子。在比例边界有限元法计算应力强度因子的框架下,引入随机参数进行蒙特卡罗模拟(Monte Carlo simulation, MCS),并提出一种新颖的基于MCS的不确定量化分析。与直接的MCS不同,采用奇异值分解构造低阶的子空间,降低系统的自由度,并使用径向基函数对子空间进行近似,通过子空间的线性组合获得新的结构响应,实现基于MCS的快速不确定量化分析。考虑不同荷载状况下,结构形状参数和材料属性参数对应力强度因子的影响,使用改进的MCS计算应力强度因子的统计特征,量化不确定参数对结构的影响。最后通过若干算例验证了该算法的准确性和有效性。