期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Non-Intrusive Reduced OrderModeling of Convection Dominated Flows Using Artificial NeuralNetworkswithApplication to Rayleigh-Taylor Instability 被引量:1
1
作者 Zhen Gao Qi Liu +3 位作者 Jan S.Hesthaven Bao-Shan Wang Wai Sun Don Xiao Wen 《Communications in Computational Physics》 SCIE 2021年第6期97-123,共27页
.A non-intrusive reduced order model(ROM)that combines a proper orthogonal decomposition(POD)and an artificial neural network(ANN)is primarily studied to investigate the applicability of the proposed ROM in recovering... .A non-intrusive reduced order model(ROM)that combines a proper orthogonal decomposition(POD)and an artificial neural network(ANN)is primarily studied to investigate the applicability of the proposed ROM in recovering the solutions with shocks and strong gradients accurately and resolving fine-scale structures efficiently for hyperbolic conservation laws.Its accuracy is demonstrated by solving a high-dimensional parametrized ODE and the one-dimensional viscous Burgers’equation with a parameterized diffusion coefficient.The two-dimensional singlemode Rayleigh-Taylor instability(RTI),where the amplitude of the small perturbation and time are considered as free parameters,is also simulated.An adaptive sampling method in time during the linear regime of the RTI is designed to reduce the number of snapshots required for POD and the training of ANN.The extensive numerical results show that the ROM can achieve an acceptable accuracy with improved efficiency in comparison with the standard full order method. 展开更多
关键词 Rayleigh-Taylor instability non-intrusive reduced basis method proper orthogonal decomposition artificial neural network adaptive sampling method
原文传递
局部非侵入式约化基模型在瑞利-泰勒不稳定中的应用
2
作者 温晓 刘琪 +2 位作者 高振 曾维新 吕咸青 《山东大学学报(理学版)》 CAS CSCD 北大核心 2020年第2期109-117,共9页
局部的非侵入式约化基模型用于模拟瑞利-泰勒不稳定性(Rayleigh-Taylor instability,RTI)随时间演化的过程,其中初始小扰动的振幅和时间可视为自由参数。约化基模型把解看作一组基函数的线性组合,其中,基函数由本征正交分解获得,人工神... 局部的非侵入式约化基模型用于模拟瑞利-泰勒不稳定性(Rayleigh-Taylor instability,RTI)随时间演化的过程,其中初始小扰动的振幅和时间可视为自由参数。约化基模型把解看作一组基函数的线性组合,其中,基函数由本征正交分解获得,人工神经网络用于建立参数与基函数系数之间的映射关系。由于RTI随着时间的增加,相应的结构越来越复杂,尤其是后期会产生小规模旋涡的卷曲结构,因此考虑将RTI分为早期发展(线性)和中后期(拟非线性和弱非线性体制)发展阶段,即分段考虑时间参数。将时间参数分为3、5、6段,局部的非侵入式约化基模型与全局的非侵入式约化基模型相比,在精度相似的情况下,计算时间最快可以提高4倍左右。 展开更多
关键词 瑞利-泰勒不稳定性 局部非侵入式约化基模型 人工神经网络
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部