The heterogeneous nodes in the Internet of Things(IoT)are relatively weak in the computing power and storage capacity.Therefore,traditional algorithms of network security are not suitable for the IoT.Once these nodes ...The heterogeneous nodes in the Internet of Things(IoT)are relatively weak in the computing power and storage capacity.Therefore,traditional algorithms of network security are not suitable for the IoT.Once these nodes alternate between normal behavior and anomaly behavior,it is difficult to identify and isolate them by the network system in a short time,thus the data transmission accuracy and the integrity of the network function will be affected negatively.Based on the characteristics of IoT,a lightweight local outlier factor detection method is used for node detection.In order to further determine whether the nodes are an anomaly or not,the varying behavior of those nodes in terms of time is considered in this research,and a time series method is used to make the system respond to the randomness and selectiveness of anomaly behavior nodes effectively in a short period of time.Simulation results show that the proposed method can improve the accuracy of the data transmitted by the network and achieve better performance.展开更多
Since data services are penetrating into our daily life rapidly, the mobile network becomes more complicated, and the amount of data transmission is more and more increasing. In this case, the traditional statistical ...Since data services are penetrating into our daily life rapidly, the mobile network becomes more complicated, and the amount of data transmission is more and more increasing. In this case, the traditional statistical methods for anomalous cell detection cannot adapt to the evolution of networks, and data mining becomes the mainstream. In this paper, we propose a novel kernel density-based local outlier factor(KLOF) to assign a degree of being an outlier to each object. Firstly, the notion of KLOF is introduced, which captures exactly the relative degree of isolation. Then, by analyzing its properties, including the tightness of upper and lower bounds, sensitivity of density perturbation, we find that KLOF is much greater than 1 for outliers. Lastly, KLOFis applied on a real-world dataset to detect anomalous cells with abnormal key performance indicators(KPIs) to verify its reliability. The experiment shows that KLOF can find outliers efficiently. It can be a guideline for the operators to perform faster and more efficient trouble shooting.展开更多
针对局部异常因子(local outlier factor,LOF)异常检测算法时间空间复杂度高、对交叉异常及低密度簇周围异常点不敏感等局限,提出了基于近邻搜索空间提取的LOF异常检测算法(isolation-based data extracting LOF,iDELOF),将基于隔离思...针对局部异常因子(local outlier factor,LOF)异常检测算法时间空间复杂度高、对交叉异常及低密度簇周围异常点不敏感等局限,提出了基于近邻搜索空间提取的LOF异常检测算法(isolation-based data extracting LOF,iDELOF),将基于隔离思想的近邻搜索空间提取(isolation-based KNN search space extraction,iKSSE)前置于LOF算法,以高效剪切掉大量无用以及干扰数据,获得更加精准的搜索空间。基于此完成了理论以及4组实验分析,每组实验分别进行iDELOF算法与LOF、iForest、iNNE等多种典型算法的对比分析。结果表明:iDELOF算法通过拉大正异常点局部离群因子的差距,增强了对交叉异常以及低密度簇周围异常点的识别能力,提升了LOF的检测效果;iDELOF算法在识别轴平行异常方面与LOF同样具有明显优越性;iDELOF算法通过iKSSE所获数据子集显著小于原数据集,多数子集数据量小于原数据集的1%,因此iDELOF的时间空间复杂度显著降低,且原数据集数据量越大,优越性越明显,当数据量足够大时,iDELOF算法的运行时间将低于IF算法。展开更多
为有效识别桥梁健康监测数据的异常,减少误预警、漏预警现象,保障桥梁监测数据的质量和有效性,针对大跨度斜拉桥长期监测数据的缺失、离群和漂移3类异常数据,提出基于时间序列压缩分割的监测数据异常识别算法。该算法将原始监测数据时...为有效识别桥梁健康监测数据的异常,减少误预警、漏预警现象,保障桥梁监测数据的质量和有效性,针对大跨度斜拉桥长期监测数据的缺失、离群和漂移3类异常数据,提出基于时间序列压缩分割的监测数据异常识别算法。该算法将原始监测数据时间序列通过基于序列重要点(Series Importance Point, SIP)的时间序列线性分段(Piecewise Linear Represent, PLR)算法(PLR_SIP)得到数条时间子序列;然后采用欧氏距离进行时间子序列的相似性分析,并基于改进的局部离群因子(Local Outlier Factor, LOF)算法计算每条时间子序列的局部离群因子;最后将其与设定的阈值相比较,从而识别出监测数据的异常。为验证该算法的准确性与工程实用性,对某公路大跨度斜拉桥健康监测数据进行异常识别。结果表明:采用PLR_SIP算法对原始时间序列压缩分割得到的时间子序列能够准确地反映原序列的变化趋势和范围;改进的LOF算法突破了传统LOF算法仅能识别离群值这类无持续时间异常的局限性,能够排除噪声的干扰,实现对离群、缺失和漂移3种异常的识别。该算法无需定义训练集,直接以原始监测数据作为算法的输入,同时能够自适应调整阈值参数,具有良好的可扩展性、实时性、准确性和高效性,适用于处理实时、大量的桥梁健康监测数据。展开更多
基金This work is partially supported by the Ministry of Education of China(www.moe.gov.cn)under grant Nos.201802123091(received by F.W.)and 201802123068(received by Z.W.)Scientific Project of CAFUC(www.cafuc.edu.cn)under grant Nos.F2017KF02 and J2018-3(both received by Z.W.)Teaching Reform Project of CAFUC(www.cafuc.edu.cn)under grant No.E2020044(received by Z.W.).
文摘The heterogeneous nodes in the Internet of Things(IoT)are relatively weak in the computing power and storage capacity.Therefore,traditional algorithms of network security are not suitable for the IoT.Once these nodes alternate between normal behavior and anomaly behavior,it is difficult to identify and isolate them by the network system in a short time,thus the data transmission accuracy and the integrity of the network function will be affected negatively.Based on the characteristics of IoT,a lightweight local outlier factor detection method is used for node detection.In order to further determine whether the nodes are an anomaly or not,the varying behavior of those nodes in terms of time is considered in this research,and a time series method is used to make the system respond to the randomness and selectiveness of anomaly behavior nodes effectively in a short period of time.Simulation results show that the proposed method can improve the accuracy of the data transmitted by the network and achieve better performance.
基金supported by the National Basic Research Program of China (973 Program: 2013CB329004)
文摘Since data services are penetrating into our daily life rapidly, the mobile network becomes more complicated, and the amount of data transmission is more and more increasing. In this case, the traditional statistical methods for anomalous cell detection cannot adapt to the evolution of networks, and data mining becomes the mainstream. In this paper, we propose a novel kernel density-based local outlier factor(KLOF) to assign a degree of being an outlier to each object. Firstly, the notion of KLOF is introduced, which captures exactly the relative degree of isolation. Then, by analyzing its properties, including the tightness of upper and lower bounds, sensitivity of density perturbation, we find that KLOF is much greater than 1 for outliers. Lastly, KLOFis applied on a real-world dataset to detect anomalous cells with abnormal key performance indicators(KPIs) to verify its reliability. The experiment shows that KLOF can find outliers efficiently. It can be a guideline for the operators to perform faster and more efficient trouble shooting.
文摘针对局部异常因子(local outlier factor,LOF)异常检测算法时间空间复杂度高、对交叉异常及低密度簇周围异常点不敏感等局限,提出了基于近邻搜索空间提取的LOF异常检测算法(isolation-based data extracting LOF,iDELOF),将基于隔离思想的近邻搜索空间提取(isolation-based KNN search space extraction,iKSSE)前置于LOF算法,以高效剪切掉大量无用以及干扰数据,获得更加精准的搜索空间。基于此完成了理论以及4组实验分析,每组实验分别进行iDELOF算法与LOF、iForest、iNNE等多种典型算法的对比分析。结果表明:iDELOF算法通过拉大正异常点局部离群因子的差距,增强了对交叉异常以及低密度簇周围异常点的识别能力,提升了LOF的检测效果;iDELOF算法在识别轴平行异常方面与LOF同样具有明显优越性;iDELOF算法通过iKSSE所获数据子集显著小于原数据集,多数子集数据量小于原数据集的1%,因此iDELOF的时间空间复杂度显著降低,且原数据集数据量越大,优越性越明显,当数据量足够大时,iDELOF算法的运行时间将低于IF算法。
文摘为有效识别桥梁健康监测数据的异常,减少误预警、漏预警现象,保障桥梁监测数据的质量和有效性,针对大跨度斜拉桥长期监测数据的缺失、离群和漂移3类异常数据,提出基于时间序列压缩分割的监测数据异常识别算法。该算法将原始监测数据时间序列通过基于序列重要点(Series Importance Point, SIP)的时间序列线性分段(Piecewise Linear Represent, PLR)算法(PLR_SIP)得到数条时间子序列;然后采用欧氏距离进行时间子序列的相似性分析,并基于改进的局部离群因子(Local Outlier Factor, LOF)算法计算每条时间子序列的局部离群因子;最后将其与设定的阈值相比较,从而识别出监测数据的异常。为验证该算法的准确性与工程实用性,对某公路大跨度斜拉桥健康监测数据进行异常识别。结果表明:采用PLR_SIP算法对原始时间序列压缩分割得到的时间子序列能够准确地反映原序列的变化趋势和范围;改进的LOF算法突破了传统LOF算法仅能识别离群值这类无持续时间异常的局限性,能够排除噪声的干扰,实现对离群、缺失和漂移3种异常的识别。该算法无需定义训练集,直接以原始监测数据作为算法的输入,同时能够自适应调整阈值参数,具有良好的可扩展性、实时性、准确性和高效性,适用于处理实时、大量的桥梁健康监测数据。