A locally resonant sonic material (LRSM) is an elastic matrix containing a periodic arrangement of identical local resonators (LRs), which can reflect strongly near their natural frequencies, where the wavelength ...A locally resonant sonic material (LRSM) is an elastic matrix containing a periodic arrangement of identical local resonators (LRs), which can reflect strongly near their natural frequencies, where the wavelength in the matrix is still much larger than the structural periodicity. Due to the periodic arrangement, an LRSM can also display a Bragg scattering effect, which is a characteristic of phononic crystals. A specific LRSM which possesses both local resonance and Bragg scattering effects is presented. Via the layered-multiple-scattering theory, the complex band structure and the transmittance of such LRSM are discussed in detail. Through the analysis of the refraction behavior at the boundary of the composite, we find that the transmittance performance of an LRSM for oblique incidence depends on the refraction of its boundary and the transmission behaviors of different wave modes inside the composite. As a result, it is better to use some low-speed materials (compared with the speed of waves in surrounding medium) as the LRSM matrix for designing sound blocking materials in underwater applications, since their acoustic properties are more robust to the incident angle. Finally, a gap-coupled LRSM with a broad sub-wavelength transmission gap is studied, whose acoustic performance is insensitive to the angle of incidence.展开更多
This paper aims to propose a topology optimization method on generating porous structures comprising multiple materials.The mathematical optimization formulation is established under the constraints of individual volu...This paper aims to propose a topology optimization method on generating porous structures comprising multiple materials.The mathematical optimization formulation is established under the constraints of individual volume fraction of constituent phase or total mass,as well as the local volume fraction of all phases.The original optimization problem with numerous constraints is converted into a box-constrained optimization problem by incorporating all constraints to the augmented Lagrangian function,avoiding the parameter dependence in the conventional aggregation process.Furthermore,the local volume percentage can be precisely satisfied.The effects including the globalmass bound,the influence radius and local volume percentage on final designs are exploited through numerical examples.The numerical results also reveal that porous structures keep a balance between the bulk design and periodic design in terms of the resulting compliance.All results,including those for irregular structures andmultiple volume fraction constraints,demonstrate that the proposedmethod can provide an efficient solution for multiple material infill structures.展开更多
A set of constitutive equations are derived based on the authors'lower bound yield loci for porous materials. By using these equations, the conditions for shear localization in porous materials are then investigat...A set of constitutive equations are derived based on the authors'lower bound yield loci for porous materials. By using these equations, the conditions for shear localization in porous materials are then investigated and the results are compared with those of Gurson's equations and the finite element analysis. The advantages of the present constitutive equations are fully illustrated.展开更多
This paper presents the development of ultra high strength concrete (UHSC) using local materials. UHSC mixture proportions were developed using local materials so that UHSC may be made more affordable to a wider var...This paper presents the development of ultra high strength concrete (UHSC) using local materials. UHSC mixture proportions were developed using local materials so that UHSC may be made more affordable to a wider variety of applications. Specifically, local sand with a top size of 600 um, and locally available Type I/II cement and silica fume were used in this research. Each of these material selections is seen as an improvement in sustainability for UHSC. Two mixtures (one with and one without fibers) were recommended as the UHSC mixtures. The greatest compressive strengths obtained in this study were 165.6 MPa for UHSC with steel fibers and 161.9 MPa for UHSC without fibers. The compressive and flexural strengths obtained from the UHSC mixtures developed in this work are comparable to UHSC strengths presented in the literature. Producing this innovative material with local materials reduces the cost of the material, improves sustainability, and produces mechanical performance similar to prepackaged, commercially available products.展开更多
Introduction: Diabetic ulcers are one of the main causes of morbidity and hospitalisation and thereby affecting the quality of life of persons suffering from the condition. The aim of the study was to assess the level...Introduction: Diabetic ulcers are one of the main causes of morbidity and hospitalisation and thereby affecting the quality of life of persons suffering from the condition. The aim of the study was to assess the level of satisfaction of persons who underwent treatment for diabetic ulcers using negative pressure produced from locally available materials. Materials and Methods: Creating negative pressure using locally available materials such as sterilized foam, tubes with diameter between 0.5 and 0.8 cm, transparent adhesive plaster and a suction machine. Results: Thirty-seven patients were enrolled in the current study;70.3% (n = 26) were known diabetic patients on regular treatment while 29.7% (n = 11) were diagnosed when they presented for the first time with ulcers. Patients were made to grade their level of satisfaction with therapy involving these locally used materials. Out of the 37 patients, 35 (94.6%) stated their therapy was excellent while 1 (2.7%) said the therapy was good;therapy was discontinued in one patient (2.7%) who had some complication. Conclusion: Desirable outcomes were obtained when patients were treated using negative pressure wound therapy (NPWT) produced using locally manufactured materials. Patients were able to pay for the therapy since the cost was reasonably low.展开更多
In this paper, the dynamic interaction of two parallel cracks in functionally graded materials (FGMs) is investigated by means of the non-local theory. To make the analysis tractable, the shear modulus and the mater...In this paper, the dynamic interaction of two parallel cracks in functionally graded materials (FGMs) is investigated by means of the non-local theory. To make the analysis tractable, the shear modulus and the material density are assumed to vary exponentially with the coordinate vertical to the crack. To reduce mathematical difficulties, a one-dimensional non-local kernel is used instead of a twodimensional one for the dynamic problem to obtain stress fields near the crack tips. By use of the Fourier transform, the problem can be solved with the help of two pairs of dual integral equations, in which the unknown variables are the jumps of displacements across the crack surfaces. To solve the dual integral equations, the jumps of displacements across the crack surfaces are expanded in a series of Jacobi polynomials. Unlike the classical elasticity solutions, it is found that no stress singularity is present at the crack tips. The non-local elastic solutions yield a finite hoop stress at the crack tips. The present result provides theoretical references helpful for evaluating relevant strength and preventing material failure of FGMs with initial cracks. The magnitude of the finite stress field depends on relevant parameters, such as the crack length, the distance between two parallel cracks, the parameter describing the FGMs, the frequency of the incident waves and the lattice parameter of materials.展开更多
The dynamic behavior of a Griffith permeable crack under harmonic anti-plane shear waves in the piezoelectric materials is investigated by use of the non-local theory. To overcome the mathematical difficulties, a one-...The dynamic behavior of a Griffith permeable crack under harmonic anti-plane shear waves in the piezoelectric materials is investigated by use of the non-local theory. To overcome the mathematical difficulties, a one-dimensional non-local kernel is used instead of a two-dimensional one for the anti-plane dynamic problem to obtain the stress and the electric displacement near the crack tips. By means of Fourier transform, the problem can be solved with a pair of dual integral equations that the unknown variable is the jump of the displacement across the crack surfaces. These equations are solved with the Schmidt method and numerical examples are provided. Contrary to the previous results, it is found that no stress and electric displacement singularities are present at the crack tip. The finite hoop stress and the electric displacement depend on the crack length, the lattice parameter of the materials and the circle frequency of the incident waves. This enables us to employ the maximum stress hypothesis to deal with fracture problems in a natural way.展开更多
The deformation localization in strain-rate sensitive porous materials is analyzed based on the lower bound approach proposed by the author. The retarding effect of material viscosity on deformation localization and t...The deformation localization in strain-rate sensitive porous materials is analyzed based on the lower bound approach proposed by the author. The retarding effect of material viscosity on deformation localization and the influence of the material strain-rate sensitivity factor on the critical strain to localized necking and the shear localization are investigated. Consideration concerning the material inhomogeneity and the void nucleation effect is also given. Finally the fracture strains of the plane strain tension specimens of AISI4340 steels are calculated and the results are compared with those of the experiment and of Gurson's equations.展开更多
This study focuses on developing pervious concrete mixtures that have higher compressive strengths than conventional pervious concrete. This study also focuses on producing high strength pervious concrete that is also...This study focuses on developing pervious concrete mixtures that have higher compressive strengths than conventional pervious concrete. This study also focuses on producing high strength pervious concrete that is also made with locally available materials. The study focused on four aspects of pervious concrete to produce high compressive strengths. These parameters were the effect of the coarse aggregate (type and size), the compaction of the test specimens, the effect of the w/c along with superplasticizers, and lastly the effect of silica fume. This study was completed parametrically in order to isolate each variable in order to see its individual affect. Once an optimum performance was obtained from one variable the best performing mixture was used for the next variable testing. This method allowed for the highest performing mixture to be obtained from each of the investigated variables. The results showed that high strength pervious concrete made with local aggregates, without polymers, and without fibers can be produced in the range of 15.44 MPa - 21.63 MPa. A porosity range 19.1% - 32.9% with a percolation rate range of 5.8 mm/s - 1.9 mm/s was also achieved, with a porosity of 19.4% and percolation rate of 2.6 mm/s for the highest performing mixture.展开更多
We study optical localized waves on a plane-wave background in negative-index materials governed by the defocusing nonlinear Schr6dinger equation with self-steepening effect. Important characteristics of localized wav...We study optical localized waves on a plane-wave background in negative-index materials governed by the defocusing nonlinear Schr6dinger equation with self-steepening effect. Important characteristics of localized waves, such as the excitations, transitions, propagation stability, and mechanism, are revealed in detail. An intrigu- ing sequential transition that involves the rogue wave, antidark-dark soliton pair, antidark soliton and antidark soliton pair can be triggered as the self-steepening effect attenuates. The corresponding phase diagram is estab- lished in the defocusing regime of negative-index materials. The propagation stability of the localized waves is confirmed numerically. In particular, our results illuminate the transition mechanism by establishing the exact correspondence between the transition and the modulation instability analysis.展开更多
This article summarizes the different local construction materials observed in two regions of Cameroon (Adamawa and North-West). These raw materials were mapped and evaluated using various methods of investigation (sp...This article summarizes the different local construction materials observed in two regions of Cameroon (Adamawa and North-West). These raw materials were mapped and evaluated using various methods of investigation (spatial distribution, estimation of reserves, development of a database compatible with geo-referenced maps). The results obtained show three types of local construction materials (vegetal, pedological and geological) with quantitative estimation or distribution. Vegetal local materials include herbaceous savanna with strong dominance of straw in Adamawa region than the North West region. Pedological local construction materials include lateritic soils (ferruginous or clayey), harplan, sandy clay and sandy clay soil while geological local construction materials include volcanic, plutonic and metamorphic rocks. Many sites of these geological materials are suitable for the rock quarry plant. Adamawa region also contains sedimentary rocks constituted by metamorphic conglomerate and sandstones. Two main types of residential homes are constructed with these local construction materials in these regions of Cameroon. These include huts and houses.展开更多
This study presents the development of high strength concrete (HSC) that has been made more sustainable by using both local materials from central Texas and recycled concrete aggregate (RCA), which has also been obtai...This study presents the development of high strength concrete (HSC) that has been made more sustainable by using both local materials from central Texas and recycled concrete aggregate (RCA), which has also been obtained locally. The developed mixtures were proportioned with local constituents to increase the sustainable impact of the material by reducing emissions due to shipping as well as to make HSC more affordable to a wider variety of applications. The specific constituents were: limestone, dolomite, manufactured sand (limestone), locally available Type I/II cement, silica fume, and recycled concrete aggregate, which was obtained from a local recycler which obtains their product from local demolition. Multiple variables were investigated, such as the aggregate type and size, concrete age (7, 14, and 28-days), the curing regimen, and the water-to-cement ratio (w/c) to optimize a HSC mixture that used local materials. This systematic development revealed that heat curing the specimens in a water bath at 50℃ (122oF) after demolding and then dry curing at 200℃ (392oF) two days before testing with a w/c of 0.28 at 28-days produced the highest compressive strengths. Once an optimum HSC mixture was identified a partial replacement of the coarse aggregate with RCA was completed at 10%, 20%, and 30%. The results showed a loss in compressive strength with an increase in RCA replacement percentages, with the highest strength being approximately 93.0 MPa (13,484 psi) at 28-days for the 10% RCA replacement. The lowest strength obtained from an RCA-HSC mixture was approximately 72.9 (MPa) (10,576 psi) at 7-days. The compressive strengths obtained from the HSC mixtures containing RCA developed in this study are comparable to HSC strengths presented in the literature. Developing this innovative material with local materials and RCA ultimately produces a novel sustainable construction material, reduces the costs, and produces mechanical performance similar to prepackaged, commercially, available construction building materials.展开更多
In view of the non-local phenomena appearing in the rock and concrete-like materials, the non-local damage and fracture model of rock and concrete-like materials was established through non-local method of Gaussian we...In view of the non-local phenomena appearing in the rock and concrete-like materials, the non-local damage and fracture model of rock and concrete-like materials was established through non-local method of Gaussian weighting function. The result indicates that, the stress of one point in the material is correlated not only to its strain history, but also to the interaction of the points in its certain adjacent region of the material. Based on the established non-local model, the numerical simulation of notch containing three-point bending beam was carried out. The results show that the grid sensitivities have been avoided and the fracture direction of the material has not been influenced by the grid shape, and the model proposed can be used to better simulate the damage developing process of the rock and concrete-like materials.展开更多
Living in a habitat with comfort is requested by all. Cinder block bricks have poor thermal properties, leading people to use fan heaters and air conditioners to regain comfort. To overcome this problem of thermal dis...Living in a habitat with comfort is requested by all. Cinder block bricks have poor thermal properties, leading people to use fan heaters and air conditioners to regain comfort. To overcome this problem of thermal discomfort in buildings, we used lightweight concrete such as foamed concrete which is a material that has improved thermal properties for thermal comfort. In addition, this material was compared with local materials used for the construction of buildings such as BTC, adobe and BLT mixed with binders. The results showed that foamed concrete is a material that has good thermal and mechanical properties compared to local materials mixed with binders. The foamed concrete having acceptable thermo-mechanical properties was that having a density of 930 kg/m<sup>3</sup>. It has a thermal resistance of 0.4 m<sup>2</sup>·K/W for a thickness of 20 cm. The foamed concrete having acceptable thermo-mechanical properties was that having a density of 930 kg/m3</sup>. It has a thermal resistance of 0.4 m2</sup>·K/W for a thickness of 20 cm. For sunshine on a daily cycle equal to 12 hours, the characteristic thickness achieved by this material is 7.29 cm. It also has a shallow depth of heat diffusion having a lower thickness than other materials. This shows that foamed concrete is a promising material for the construction of buildings.展开更多
The volumetric strain was categorized into elastic and plastic parts. The farmer camposed of axial and lateral strains is uniform and determined by Hooke's law ; however, the latter consisting of axial and lateral st...The volumetric strain was categorized into elastic and plastic parts. The farmer camposed of axial and lateral strains is uniform and determined by Hooke's law ; however, the latter consisting of axial and lateral strains is a fuaction af thickness af shear band determined by grndieat-dependeat plasticity by cansidering the heterngeneity of quasi- brittle materials. The non- uniform lateral strain due to the fact that shear band was farmed in the middle of specimen was averaged within specimen to precisely assess the volumetric strain. Then, the analytical expression for volumetric strain was verified by comparison with two earlier experimental results for concrete and rack. Finally, a detailed parametric study was carried out to investigate effects of constitutive parameters ( shear band thickness, elastic and softening rnoduli ) and geometrical size of specimen( height and width of specimen ) on the volume dilatancy.展开更多
In order to further study the damage and failure mechanism for rock similar materials,this study investigated the mechanical properties and failure characteristics,law of damage space development,and damage evolution ...In order to further study the damage and failure mechanism for rock similar materials,this study investigated the mechanical properties and failure characteristics,law of damage space development,and damage evolution characteristics for rock similar materials with pre-existing cracks of varying length under uniaxial compression load.The equipment used in this study is the self-developed YYW-Ⅱ strain controlled unconfined compression apparatus and the PCIE-8 acoustic emission monitoring system.Results show that,as the length of pre-existing crack increases:(1) the peak and residual strength reduces,and the peak axial strain and the strain during the initial compression phase increases;(2) the major failure mode is changed from shear failure to tensile failure along a vertical plane that passes the middle of the pre-existing crack;(3) The damage increases during the stable and accelerated development stage,and the effect of the pre-existing cracks is more during the accelerated development stage than the stable development stage.展开更多
The critical bifurcation orientation and its corresponding hardening modulus for rock-like geomaterials are derived by considering the effect of stiffness degradation and volumetric dilatancy under the assumption of i...The critical bifurcation orientation and its corresponding hardening modulus for rock-like geomaterials are derived by considering the effect of stiffness degradation and volumetric dilatancy under the assumption of isotropic damage. The dependency of the localized orientation on the degree of damage and initial Poisson's ratio of rock is examined and the bifurcation behavior of the uniaxial compression sample under the plane-stress condition is compared with that under plane-strain condition. It is shown that the localization orientation angle intimately depends on both the initial Poisson's ratio and degree of damage for the rock sample under the uniaxial compression condition. As the initial Poisson's ratio or degree of damage increases, the orientation angle of the plane on which localization tends to be initiated gets to decrease. At the same time, the localization orientation angle of a rock sample under the plane-stress condition is larger than that under the plane-strain condition.展开更多
The constitutive behavior of porous materials (including the yield loci, the void growth rate, the macro stress-strain relation and the strain to local- ization instability) is examined based on the lower bound approa...The constitutive behavior of porous materials (including the yield loci, the void growth rate, the macro stress-strain relation and the strain to local- ization instability) is examined based on the lower bound approach proposed by the present authors. These results are then compared with the experimental and the finite element results as well as those predicted by Gurson's equations. Emphasis is placed on approaching the real behavior from the upper and the lower bound analysis. Calculation is also made on the influence of void nucleation on the critical strain to instability and a modified strain-controlled nucleation criterion is proposed. Finally the instability and fracture of AISI4340 steel in plane strain tension is examined and comparison is made between theoretical and experimental results.展开更多
New apparatus for the determination of torsion strength of refractory materials at elevated temperatures has been developed in this work. With the employment of heating wire and induction heating unit,this device can ...New apparatus for the determination of torsion strength of refractory materials at elevated temperatures has been developed in this work. With the employment of heating wire and induction heating unit,this device can carry out torsion strength test at high temperatures at the heating rate ranging from 10 ℃/min to 200 ℃/min.Torsion strength of high alumina brick,magnesia brick and Si3 N4 bonded SiC brick has been tested at different heating rates of 10 ℃/min,100 ℃/min and 200℃/min,separately. Results indicate that,for high alumina brick,the tested torsion strength at the heating rate of 10 ℃/min is very close to that at 100 ℃/min,but very different from that at 200 ℃/min. The tested torsion strength of magnesia brick at different heating rates differs greatly,while that of Si3 N4 bonded SiC brick is similar. This suggests that the structure of refractory materials with poor thermal shock resistance might be damaged when the heating rate of 200 ℃/min was applied,but the heating rate of 100 ℃/min is possible for a lot of refractory products. At fast heating rates,it takes only1 h to finish a test at elevated temperatures,thus saving a lot of time and energy.展开更多
The hot or cold processing would induce the change and the inhomogeneous of the material mechanical properties in the local processing region of the structure,and it is difficult to obtain the specific mechanical prop...The hot or cold processing would induce the change and the inhomogeneous of the material mechanical properties in the local processing region of the structure,and it is difficult to obtain the specific mechanical properties in these regions by using the traditional material tensile test.To accurately get actual material mechanical properties in the local region of structure,a micro-indentation test system incorporated by an electronic universal material test device has been established.An indenter displacement sensor and a group of special micro-indenter assemblies are estab-lished.A numerical indentation inversion analysis method by using ABAQUS software is also proposed in this study.Based on the above test system and analysis platform,an approach to obtaining material mechanical properties in the local region of structures is proposed and established.The ball indentation test is performed and combined with the energy method by using various changed mechanical properties of 316L austenitic stainless steel under differ-ent elongations.The investigated results indicate that the material mechanical properties and the micro-indentation morphological changes have evidently relevance.Compared with the tensile test results,the deviations of material mechanical parameters,such as hardness H,the hardening exponent n,the yield strength σy and others are within 5%obtained through the indentation test and the finite element analysis.It provides an effective and convenient method for obtaining the actual material mechanical properties in the local processing region of the structure.展开更多
基金the China Scholarship Council for funding him to study at the University of Southampton in the UK
文摘A locally resonant sonic material (LRSM) is an elastic matrix containing a periodic arrangement of identical local resonators (LRs), which can reflect strongly near their natural frequencies, where the wavelength in the matrix is still much larger than the structural periodicity. Due to the periodic arrangement, an LRSM can also display a Bragg scattering effect, which is a characteristic of phononic crystals. A specific LRSM which possesses both local resonance and Bragg scattering effects is presented. Via the layered-multiple-scattering theory, the complex band structure and the transmittance of such LRSM are discussed in detail. Through the analysis of the refraction behavior at the boundary of the composite, we find that the transmittance performance of an LRSM for oblique incidence depends on the refraction of its boundary and the transmission behaviors of different wave modes inside the composite. As a result, it is better to use some low-speed materials (compared with the speed of waves in surrounding medium) as the LRSM matrix for designing sound blocking materials in underwater applications, since their acoustic properties are more robust to the incident angle. Finally, a gap-coupled LRSM with a broad sub-wavelength transmission gap is studied, whose acoustic performance is insensitive to the angle of incidence.
基金This study is financially supported by StateKey Laboratory of Alternate Electrical Power System with Renewable Energy Sources(Grant No.LAPS22012).
文摘This paper aims to propose a topology optimization method on generating porous structures comprising multiple materials.The mathematical optimization formulation is established under the constraints of individual volume fraction of constituent phase or total mass,as well as the local volume fraction of all phases.The original optimization problem with numerous constraints is converted into a box-constrained optimization problem by incorporating all constraints to the augmented Lagrangian function,avoiding the parameter dependence in the conventional aggregation process.Furthermore,the local volume percentage can be precisely satisfied.The effects including the globalmass bound,the influence radius and local volume percentage on final designs are exploited through numerical examples.The numerical results also reveal that porous structures keep a balance between the bulk design and periodic design in terms of the resulting compliance.All results,including those for irregular structures andmultiple volume fraction constraints,demonstrate that the proposedmethod can provide an efficient solution for multiple material infill structures.
文摘A set of constitutive equations are derived based on the authors'lower bound yield loci for porous materials. By using these equations, the conditions for shear localization in porous materials are then investigated and the results are compared with those of Gurson's equations and the finite element analysis. The advantages of the present constitutive equations are fully illustrated.
文摘This paper presents the development of ultra high strength concrete (UHSC) using local materials. UHSC mixture proportions were developed using local materials so that UHSC may be made more affordable to a wider variety of applications. Specifically, local sand with a top size of 600 um, and locally available Type I/II cement and silica fume were used in this research. Each of these material selections is seen as an improvement in sustainability for UHSC. Two mixtures (one with and one without fibers) were recommended as the UHSC mixtures. The greatest compressive strengths obtained in this study were 165.6 MPa for UHSC with steel fibers and 161.9 MPa for UHSC without fibers. The compressive and flexural strengths obtained from the UHSC mixtures developed in this work are comparable to UHSC strengths presented in the literature. Producing this innovative material with local materials reduces the cost of the material, improves sustainability, and produces mechanical performance similar to prepackaged, commercially available products.
文摘Introduction: Diabetic ulcers are one of the main causes of morbidity and hospitalisation and thereby affecting the quality of life of persons suffering from the condition. The aim of the study was to assess the level of satisfaction of persons who underwent treatment for diabetic ulcers using negative pressure produced from locally available materials. Materials and Methods: Creating negative pressure using locally available materials such as sterilized foam, tubes with diameter between 0.5 and 0.8 cm, transparent adhesive plaster and a suction machine. Results: Thirty-seven patients were enrolled in the current study;70.3% (n = 26) were known diabetic patients on regular treatment while 29.7% (n = 11) were diagnosed when they presented for the first time with ulcers. Patients were made to grade their level of satisfaction with therapy involving these locally used materials. Out of the 37 patients, 35 (94.6%) stated their therapy was excellent while 1 (2.7%) said the therapy was good;therapy was discontinued in one patient (2.7%) who had some complication. Conclusion: Desirable outcomes were obtained when patients were treated using negative pressure wound therapy (NPWT) produced using locally manufactured materials. Patients were able to pay for the therapy since the cost was reasonably low.
基金The project supported by the National Natural Science Foundation of China(90405016,10572044)the Specialized Research Fund for the Doctoral Program of Higher Education(20040213034)
文摘In this paper, the dynamic interaction of two parallel cracks in functionally graded materials (FGMs) is investigated by means of the non-local theory. To make the analysis tractable, the shear modulus and the material density are assumed to vary exponentially with the coordinate vertical to the crack. To reduce mathematical difficulties, a one-dimensional non-local kernel is used instead of a twodimensional one for the dynamic problem to obtain stress fields near the crack tips. By use of the Fourier transform, the problem can be solved with the help of two pairs of dual integral equations, in which the unknown variables are the jumps of displacements across the crack surfaces. To solve the dual integral equations, the jumps of displacements across the crack surfaces are expanded in a series of Jacobi polynomials. Unlike the classical elasticity solutions, it is found that no stress singularity is present at the crack tips. The non-local elastic solutions yield a finite hoop stress at the crack tips. The present result provides theoretical references helpful for evaluating relevant strength and preventing material failure of FGMs with initial cracks. The magnitude of the finite stress field depends on relevant parameters, such as the crack length, the distance between two parallel cracks, the parameter describing the FGMs, the frequency of the incident waves and the lattice parameter of materials.
文摘The dynamic behavior of a Griffith permeable crack under harmonic anti-plane shear waves in the piezoelectric materials is investigated by use of the non-local theory. To overcome the mathematical difficulties, a one-dimensional non-local kernel is used instead of a two-dimensional one for the anti-plane dynamic problem to obtain the stress and the electric displacement near the crack tips. By means of Fourier transform, the problem can be solved with a pair of dual integral equations that the unknown variable is the jump of the displacement across the crack surfaces. These equations are solved with the Schmidt method and numerical examples are provided. Contrary to the previous results, it is found that no stress and electric displacement singularities are present at the crack tip. The finite hoop stress and the electric displacement depend on the crack length, the lattice parameter of the materials and the circle frequency of the incident waves. This enables us to employ the maximum stress hypothesis to deal with fracture problems in a natural way.
文摘The deformation localization in strain-rate sensitive porous materials is analyzed based on the lower bound approach proposed by the author. The retarding effect of material viscosity on deformation localization and the influence of the material strain-rate sensitivity factor on the critical strain to localized necking and the shear localization are investigated. Consideration concerning the material inhomogeneity and the void nucleation effect is also given. Finally the fracture strains of the plane strain tension specimens of AISI4340 steels are calculated and the results are compared with those of the experiment and of Gurson's equations.
文摘This study focuses on developing pervious concrete mixtures that have higher compressive strengths than conventional pervious concrete. This study also focuses on producing high strength pervious concrete that is also made with locally available materials. The study focused on four aspects of pervious concrete to produce high compressive strengths. These parameters were the effect of the coarse aggregate (type and size), the compaction of the test specimens, the effect of the w/c along with superplasticizers, and lastly the effect of silica fume. This study was completed parametrically in order to isolate each variable in order to see its individual affect. Once an optimum performance was obtained from one variable the best performing mixture was used for the next variable testing. This method allowed for the highest performing mixture to be obtained from each of the investigated variables. The results showed that high strength pervious concrete made with local aggregates, without polymers, and without fibers can be produced in the range of 15.44 MPa - 21.63 MPa. A porosity range 19.1% - 32.9% with a percolation rate range of 5.8 mm/s - 1.9 mm/s was also achieved, with a porosity of 19.4% and percolation rate of 2.6 mm/s for the highest performing mixture.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11475135,11547302,11434013 and 11425522
文摘We study optical localized waves on a plane-wave background in negative-index materials governed by the defocusing nonlinear Schr6dinger equation with self-steepening effect. Important characteristics of localized waves, such as the excitations, transitions, propagation stability, and mechanism, are revealed in detail. An intrigu- ing sequential transition that involves the rogue wave, antidark-dark soliton pair, antidark soliton and antidark soliton pair can be triggered as the self-steepening effect attenuates. The corresponding phase diagram is estab- lished in the defocusing regime of negative-index materials. The propagation stability of the localized waves is confirmed numerically. In particular, our results illuminate the transition mechanism by establishing the exact correspondence between the transition and the modulation instability analysis.
文摘This article summarizes the different local construction materials observed in two regions of Cameroon (Adamawa and North-West). These raw materials were mapped and evaluated using various methods of investigation (spatial distribution, estimation of reserves, development of a database compatible with geo-referenced maps). The results obtained show three types of local construction materials (vegetal, pedological and geological) with quantitative estimation or distribution. Vegetal local materials include herbaceous savanna with strong dominance of straw in Adamawa region than the North West region. Pedological local construction materials include lateritic soils (ferruginous or clayey), harplan, sandy clay and sandy clay soil while geological local construction materials include volcanic, plutonic and metamorphic rocks. Many sites of these geological materials are suitable for the rock quarry plant. Adamawa region also contains sedimentary rocks constituted by metamorphic conglomerate and sandstones. Two main types of residential homes are constructed with these local construction materials in these regions of Cameroon. These include huts and houses.
文摘This study presents the development of high strength concrete (HSC) that has been made more sustainable by using both local materials from central Texas and recycled concrete aggregate (RCA), which has also been obtained locally. The developed mixtures were proportioned with local constituents to increase the sustainable impact of the material by reducing emissions due to shipping as well as to make HSC more affordable to a wider variety of applications. The specific constituents were: limestone, dolomite, manufactured sand (limestone), locally available Type I/II cement, silica fume, and recycled concrete aggregate, which was obtained from a local recycler which obtains their product from local demolition. Multiple variables were investigated, such as the aggregate type and size, concrete age (7, 14, and 28-days), the curing regimen, and the water-to-cement ratio (w/c) to optimize a HSC mixture that used local materials. This systematic development revealed that heat curing the specimens in a water bath at 50℃ (122oF) after demolding and then dry curing at 200℃ (392oF) two days before testing with a w/c of 0.28 at 28-days produced the highest compressive strengths. Once an optimum HSC mixture was identified a partial replacement of the coarse aggregate with RCA was completed at 10%, 20%, and 30%. The results showed a loss in compressive strength with an increase in RCA replacement percentages, with the highest strength being approximately 93.0 MPa (13,484 psi) at 28-days for the 10% RCA replacement. The lowest strength obtained from an RCA-HSC mixture was approximately 72.9 (MPa) (10,576 psi) at 7-days. The compressive strengths obtained from the HSC mixtures containing RCA developed in this study are comparable to HSC strengths presented in the literature. Developing this innovative material with local materials and RCA ultimately produces a novel sustainable construction material, reduces the costs, and produces mechanical performance similar to prepackaged, commercially, available construction building materials.
基金Project(50904036) supported by the National Natural Science Foundation of ChinaProject (20090450421) supported China Postdoctoral Science Foundation
文摘In view of the non-local phenomena appearing in the rock and concrete-like materials, the non-local damage and fracture model of rock and concrete-like materials was established through non-local method of Gaussian weighting function. The result indicates that, the stress of one point in the material is correlated not only to its strain history, but also to the interaction of the points in its certain adjacent region of the material. Based on the established non-local model, the numerical simulation of notch containing three-point bending beam was carried out. The results show that the grid sensitivities have been avoided and the fracture direction of the material has not been influenced by the grid shape, and the model proposed can be used to better simulate the damage developing process of the rock and concrete-like materials.
文摘Living in a habitat with comfort is requested by all. Cinder block bricks have poor thermal properties, leading people to use fan heaters and air conditioners to regain comfort. To overcome this problem of thermal discomfort in buildings, we used lightweight concrete such as foamed concrete which is a material that has improved thermal properties for thermal comfort. In addition, this material was compared with local materials used for the construction of buildings such as BTC, adobe and BLT mixed with binders. The results showed that foamed concrete is a material that has good thermal and mechanical properties compared to local materials mixed with binders. The foamed concrete having acceptable thermo-mechanical properties was that having a density of 930 kg/m<sup>3</sup>. It has a thermal resistance of 0.4 m<sup>2</sup>·K/W for a thickness of 20 cm. The foamed concrete having acceptable thermo-mechanical properties was that having a density of 930 kg/m3</sup>. It has a thermal resistance of 0.4 m2</sup>·K/W for a thickness of 20 cm. For sunshine on a daily cycle equal to 12 hours, the characteristic thickness achieved by this material is 7.29 cm. It also has a shallow depth of heat diffusion having a lower thickness than other materials. This shows that foamed concrete is a promising material for the construction of buildings.
基金Funded by the National Natural Science Foundation of China(No.50309004)
文摘The volumetric strain was categorized into elastic and plastic parts. The farmer camposed of axial and lateral strains is uniform and determined by Hooke's law ; however, the latter consisting of axial and lateral strains is a fuaction af thickness af shear band determined by grndieat-dependeat plasticity by cansidering the heterngeneity of quasi- brittle materials. The non- uniform lateral strain due to the fact that shear band was farmed in the middle of specimen was averaged within specimen to precisely assess the volumetric strain. Then, the analytical expression for volumetric strain was verified by comparison with two earlier experimental results for concrete and rack. Finally, a detailed parametric study was carried out to investigate effects of constitutive parameters ( shear band thickness, elastic and softening rnoduli ) and geometrical size of specimen( height and width of specimen ) on the volume dilatancy.
基金This paper is an extended version of a published conference paper Li et al.(2017)this paper gets its funding from Project(51734007)+1 种基金supported by National Natural Science Foundation of ChinaWe would also like to acknowledge the editor-in-chief,editors and the anonymous reviewers for their valuable comments,which have greatly improved this paper.
文摘In order to further study the damage and failure mechanism for rock similar materials,this study investigated the mechanical properties and failure characteristics,law of damage space development,and damage evolution characteristics for rock similar materials with pre-existing cracks of varying length under uniaxial compression load.The equipment used in this study is the self-developed YYW-Ⅱ strain controlled unconfined compression apparatus and the PCIE-8 acoustic emission monitoring system.Results show that,as the length of pre-existing crack increases:(1) the peak and residual strength reduces,and the peak axial strain and the strain during the initial compression phase increases;(2) the major failure mode is changed from shear failure to tensile failure along a vertical plane that passes the middle of the pre-existing crack;(3) The damage increases during the stable and accelerated development stage,and the effect of the pre-existing cracks is more during the accelerated development stage than the stable development stage.
基金Project supported by the National Natural Sciences Foundation of China (No. 10172022).
文摘The critical bifurcation orientation and its corresponding hardening modulus for rock-like geomaterials are derived by considering the effect of stiffness degradation and volumetric dilatancy under the assumption of isotropic damage. The dependency of the localized orientation on the degree of damage and initial Poisson's ratio of rock is examined and the bifurcation behavior of the uniaxial compression sample under the plane-stress condition is compared with that under plane-strain condition. It is shown that the localization orientation angle intimately depends on both the initial Poisson's ratio and degree of damage for the rock sample under the uniaxial compression condition. As the initial Poisson's ratio or degree of damage increases, the orientation angle of the plane on which localization tends to be initiated gets to decrease. At the same time, the localization orientation angle of a rock sample under the plane-stress condition is larger than that under the plane-strain condition.
文摘The constitutive behavior of porous materials (including the yield loci, the void growth rate, the macro stress-strain relation and the strain to local- ization instability) is examined based on the lower bound approach proposed by the present authors. These results are then compared with the experimental and the finite element results as well as those predicted by Gurson's equations. Emphasis is placed on approaching the real behavior from the upper and the lower bound analysis. Calculation is also made on the influence of void nucleation on the critical strain to instability and a modified strain-controlled nucleation criterion is proposed. Finally the instability and fracture of AISI4340 steel in plane strain tension is examined and comparison is made between theoretical and experimental results.
文摘New apparatus for the determination of torsion strength of refractory materials at elevated temperatures has been developed in this work. With the employment of heating wire and induction heating unit,this device can carry out torsion strength test at high temperatures at the heating rate ranging from 10 ℃/min to 200 ℃/min.Torsion strength of high alumina brick,magnesia brick and Si3 N4 bonded SiC brick has been tested at different heating rates of 10 ℃/min,100 ℃/min and 200℃/min,separately. Results indicate that,for high alumina brick,the tested torsion strength at the heating rate of 10 ℃/min is very close to that at 100 ℃/min,but very different from that at 200 ℃/min. The tested torsion strength of magnesia brick at different heating rates differs greatly,while that of Si3 N4 bonded SiC brick is similar. This suggests that the structure of refractory materials with poor thermal shock resistance might be damaged when the heating rate of 200 ℃/min was applied,but the heating rate of 100 ℃/min is possible for a lot of refractory products. At fast heating rates,it takes only1 h to finish a test at elevated temperatures,thus saving a lot of time and energy.
基金Supported by National Natural Science Foundation of China(Grant No.52075434)Key R&D Projects in Shaanxi Province(Grant No.2021KW-36).
文摘The hot or cold processing would induce the change and the inhomogeneous of the material mechanical properties in the local processing region of the structure,and it is difficult to obtain the specific mechanical properties in these regions by using the traditional material tensile test.To accurately get actual material mechanical properties in the local region of structure,a micro-indentation test system incorporated by an electronic universal material test device has been established.An indenter displacement sensor and a group of special micro-indenter assemblies are estab-lished.A numerical indentation inversion analysis method by using ABAQUS software is also proposed in this study.Based on the above test system and analysis platform,an approach to obtaining material mechanical properties in the local region of structures is proposed and established.The ball indentation test is performed and combined with the energy method by using various changed mechanical properties of 316L austenitic stainless steel under differ-ent elongations.The investigated results indicate that the material mechanical properties and the micro-indentation morphological changes have evidently relevance.Compared with the tensile test results,the deviations of material mechanical parameters,such as hardness H,the hardening exponent n,the yield strength σy and others are within 5%obtained through the indentation test and the finite element analysis.It provides an effective and convenient method for obtaining the actual material mechanical properties in the local processing region of the structure.