在图优化框架的基础上,设计多传感器融合方案和有效的优化方法,提出一套具有鲁棒性的定位与建图(Simultaneous Localization and Mapping,SLAM)方案,能够有效应对室内外复杂环境。进一步发展激光-视觉后端建图融合方法,构建具备全新地...在图优化框架的基础上,设计多传感器融合方案和有效的优化方法,提出一套具有鲁棒性的定位与建图(Simultaneous Localization and Mapping,SLAM)方案,能够有效应对室内外复杂环境。进一步发展激光-视觉后端建图融合方法,构建具备全新地图表达形式的点云网格化地图。同时使用低成本传感器,设计实现基于多传感器融合的高性能低成本背包扫描系统,整体完成在未知环境中的自我定位和稠密建图,且在低性能CPU设备上将长时间运动带来的每100 m的轨迹误差平均降低至厘米级。提出的基于多传感器融合方案,在精度、算力消耗上能够匹配现有主流方案,对获取各种环境条件下的系统准确定位结果和丰富的空间信息具有重要意义。展开更多
三维局部特征描述是三维计算机视觉中的重要任务.现实场景中包含噪声、遮挡和杂波等干扰,使得准确和鲁棒的三维局部特征描述具有很大的挑战性.为提高特征描述的性能,提出一种局部曲面变化统计直方图(local sur-face variation based sta...三维局部特征描述是三维计算机视觉中的重要任务.现实场景中包含噪声、遮挡和杂波等干扰,使得准确和鲁棒的三维局部特征描述具有很大的挑战性.为提高特征描述的性能,提出一种局部曲面变化统计直方图(local sur-face variation based statistics histogram,LSVSH)描述符.首先设计一种不依赖于局部参考轴(local reference axis,LRA)的新属性(称为曲率属性),增强描述符对LRA误差的稳健性;然后沿径向剖分局部空间,在每个子空间中统计3个角度属性和1个曲率属性生成LSVSH描述符,实现对局部曲面信息的全面稳健描述.在B3R,U3M,U3OR和QuLD这4个数据集上进行大量的实验,结果表明,LSVSH在4个数据集上的RPC下面积(the area under the recall-precision curve,AUCpr)值分别为0.95,0.70,0.54和0.10,优于现有的局部特征描述符的性能;在U3M数据集上的正确配准率和在U3OR数据集上的正确识别率分别达到70%和100%,验证了LSVSH应用于物体配准和识别任务上的有效性.展开更多
文摘在图优化框架的基础上,设计多传感器融合方案和有效的优化方法,提出一套具有鲁棒性的定位与建图(Simultaneous Localization and Mapping,SLAM)方案,能够有效应对室内外复杂环境。进一步发展激光-视觉后端建图融合方法,构建具备全新地图表达形式的点云网格化地图。同时使用低成本传感器,设计实现基于多传感器融合的高性能低成本背包扫描系统,整体完成在未知环境中的自我定位和稠密建图,且在低性能CPU设备上将长时间运动带来的每100 m的轨迹误差平均降低至厘米级。提出的基于多传感器融合方案,在精度、算力消耗上能够匹配现有主流方案,对获取各种环境条件下的系统准确定位结果和丰富的空间信息具有重要意义。
文摘三维局部特征描述是三维计算机视觉中的重要任务.现实场景中包含噪声、遮挡和杂波等干扰,使得准确和鲁棒的三维局部特征描述具有很大的挑战性.为提高特征描述的性能,提出一种局部曲面变化统计直方图(local sur-face variation based statistics histogram,LSVSH)描述符.首先设计一种不依赖于局部参考轴(local reference axis,LRA)的新属性(称为曲率属性),增强描述符对LRA误差的稳健性;然后沿径向剖分局部空间,在每个子空间中统计3个角度属性和1个曲率属性生成LSVSH描述符,实现对局部曲面信息的全面稳健描述.在B3R,U3M,U3OR和QuLD这4个数据集上进行大量的实验,结果表明,LSVSH在4个数据集上的RPC下面积(the area under the recall-precision curve,AUCpr)值分别为0.95,0.70,0.54和0.10,优于现有的局部特征描述符的性能;在U3M数据集上的正确配准率和在U3OR数据集上的正确识别率分别达到70%和100%,验证了LSVSH应用于物体配准和识别任务上的有效性.