Recently, Gijbels and Rousson<SUP>[6]</SUP> suggested a new approach, called nonparametric least-squares test, to check polynomial regression relationships. Although this test procedure is not only simple ...Recently, Gijbels and Rousson<SUP>[6]</SUP> suggested a new approach, called nonparametric least-squares test, to check polynomial regression relationships. Although this test procedure is not only simple but also powerful in most cases, there are several other parameters to be chosen in addition to the kernel and bandwidth. As shown in their paper, choice of these parameters is crucial but sometimes intractable. We propose in this paper a new statistic which is based on sample variance of the locally estimated pth derivative of the regression function at each design point. The resulting test is still simple but includes no extra parameters to be determined besides the kernel and bandwidth that are necessary for nonparametric smoothing techniques. Comparison by simulations demonstrates that our test performs as well as or even better than Gijbels and Rousson’s approach. Furthermore, a real-life data set is analyzed by our method and the results obtained are satisfactory.展开更多
Partly linear regression model is useful in practice, but littleis investigated in the literature to adapt it to the real data which are dependent and conditionally heteroscedastic. In this paper, the estimators of th...Partly linear regression model is useful in practice, but littleis investigated in the literature to adapt it to the real data which are dependent and conditionally heteroscedastic. In this paper, the estimators of the regression components are constructed via local polynomial fitting and the large sample properties are explored. Under certain mild regularities, the conditions are obtained to ensure that the estimators of the nonparametric component and its derivatives are consistent up to the convergence rates which are optimal in the i.i.d. case, and the estimator of the parametric component is root-n consistent with the same rate as for parametric model. The technique adopted in the proof differs from that used and corrects the errors in the reference by Hamilton and Truong under i.i.d. samples.展开更多
We consider the problem of parameter estimation in both linear and nonlinear ordinary differential equation(ODE) models. Nonlinear ODE models are widely used in applications. But their analytic solutions are usually...We consider the problem of parameter estimation in both linear and nonlinear ordinary differential equation(ODE) models. Nonlinear ODE models are widely used in applications. But their analytic solutions are usually not available. Thus regular methods usually depend on repetitive use of numerical solutions which bring huge computational cost. We proposed a new two-stage approach which includes a smoothing method(kernel smoothing or local polynomial fitting) in the first stage, and a numerical discretization method(Eulers discretization method, the trapezoidal discretization method,or the Runge–Kutta discretization method) in the second stage. Through numerical simulations, we find the proposed method gains a proper balance between estimation accuracy and computational cost.Asymptotic properties are also presented, which show the consistency and asymptotic normality of estimators under some mild conditions. The proposed method is compared to existing methods in term of accuracy and computational cost. The simulation results show that the estimators with local linear smoothing in the first stage and trapezoidal discretization in the second stage have the lowest average relative errors. We apply the proposed method to HIV dynamics data to illustrate the practicability of the estimator.展开更多
In this paper we introduce an appealing nonparametric method for estimating variance and conditional variance functions in generalized linear models (GLMs), when designs are fixed points and random variables respect...In this paper we introduce an appealing nonparametric method for estimating variance and conditional variance functions in generalized linear models (GLMs), when designs are fixed points and random variables respectively, Bias-corrected confidence bands are proposed for the (conditional) variance by local linear smoothers. Nonparametric techniques are developed in deriving the bias-corrected confidence intervals of the (conditional) variance. The asymptotic distribution of the proposed estimator is established and show that the bias-corrected confidence bands asymptotically have the correct coverage properties. A small simulation is performed when unknown regression parameter is estimated by nonparametric quasi-likelihood. The results are also applicable to nonparamctric autoregressive times series model with heteroscedastic conditional variance.展开更多
基金the National Natural Science Foundations of China (No.19971006 and 60075001).
文摘Recently, Gijbels and Rousson<SUP>[6]</SUP> suggested a new approach, called nonparametric least-squares test, to check polynomial regression relationships. Although this test procedure is not only simple but also powerful in most cases, there are several other parameters to be chosen in addition to the kernel and bandwidth. As shown in their paper, choice of these parameters is crucial but sometimes intractable. We propose in this paper a new statistic which is based on sample variance of the locally estimated pth derivative of the regression function at each design point. The resulting test is still simple but includes no extra parameters to be determined besides the kernel and bandwidth that are necessary for nonparametric smoothing techniques. Comparison by simulations demonstrates that our test performs as well as or even better than Gijbels and Rousson’s approach. Furthermore, a real-life data set is analyzed by our method and the results obtained are satisfactory.
基金This work was partially supported by the National Natural Science Foundation of China (Grant No.79930900) the Belgian Government's "Projet d'Actions de Recherche Concertees" (PARC No. 93/98-164) China Educational Ministry's Research Fund for Retur
文摘Partly linear regression model is useful in practice, but littleis investigated in the literature to adapt it to the real data which are dependent and conditionally heteroscedastic. In this paper, the estimators of the regression components are constructed via local polynomial fitting and the large sample properties are explored. Under certain mild regularities, the conditions are obtained to ensure that the estimators of the nonparametric component and its derivatives are consistent up to the convergence rates which are optimal in the i.i.d. case, and the estimator of the parametric component is root-n consistent with the same rate as for parametric model. The technique adopted in the proof differs from that used and corrects the errors in the reference by Hamilton and Truong under i.i.d. samples.
基金Supported by NSFC(Grant Nos.11201317,11028103,11231010,11471223)Doctoral Fund of Ministry of Education of China(Grant No.20111108120002)+1 种基金the Beijing Municipal Education Commission Foundation(Grant No.KM201210028005)the Key Project of Beijing Municipal Educational Commission
文摘We consider the problem of parameter estimation in both linear and nonlinear ordinary differential equation(ODE) models. Nonlinear ODE models are widely used in applications. But their analytic solutions are usually not available. Thus regular methods usually depend on repetitive use of numerical solutions which bring huge computational cost. We proposed a new two-stage approach which includes a smoothing method(kernel smoothing or local polynomial fitting) in the first stage, and a numerical discretization method(Eulers discretization method, the trapezoidal discretization method,or the Runge–Kutta discretization method) in the second stage. Through numerical simulations, we find the proposed method gains a proper balance between estimation accuracy and computational cost.Asymptotic properties are also presented, which show the consistency and asymptotic normality of estimators under some mild conditions. The proposed method is compared to existing methods in term of accuracy and computational cost. The simulation results show that the estimators with local linear smoothing in the first stage and trapezoidal discretization in the second stage have the lowest average relative errors. We apply the proposed method to HIV dynamics data to illustrate the practicability of the estimator.
基金Supported by the National Natural Science Foundation of China (No.10471140).
文摘In this paper we introduce an appealing nonparametric method for estimating variance and conditional variance functions in generalized linear models (GLMs), when designs are fixed points and random variables respectively, Bias-corrected confidence bands are proposed for the (conditional) variance by local linear smoothers. Nonparametric techniques are developed in deriving the bias-corrected confidence intervals of the (conditional) variance. The asymptotic distribution of the proposed estimator is established and show that the bias-corrected confidence bands asymptotically have the correct coverage properties. A small simulation is performed when unknown regression parameter is estimated by nonparametric quasi-likelihood. The results are also applicable to nonparamctric autoregressive times series model with heteroscedastic conditional variance.