期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
A Note on the Nonparametric Least-squares Test for Checking a Polynomial Relationship 被引量:3
1
作者 Chang-lin Mei, Shu-yuan He, Yan-hua WangLMAM, Institute of Mathematics, Peking University, Beijing 100871, China School of Sciences, Xi’an Jiaotong University, Xi’an 710049, China 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 2003年第3期511-520,共10页
Recently, Gijbels and Rousson<SUP>[6]</SUP> suggested a new approach, called nonparametric least-squares test, to check polynomial regression relationships. Although this test procedure is not only simple ... Recently, Gijbels and Rousson<SUP>[6]</SUP> suggested a new approach, called nonparametric least-squares test, to check polynomial regression relationships. Although this test procedure is not only simple but also powerful in most cases, there are several other parameters to be chosen in addition to the kernel and bandwidth. As shown in their paper, choice of these parameters is crucial but sometimes intractable. We propose in this paper a new statistic which is based on sample variance of the locally estimated pth derivative of the regression function at each design point. The resulting test is still simple but includes no extra parameters to be determined besides the kernel and bandwidth that are necessary for nonparametric smoothing techniques. Comparison by simulations demonstrates that our test performs as well as or even better than Gijbels and Rousson’s approach. Furthermore, a real-life data set is analyzed by our method and the results obtained are satisfactory. 展开更多
关键词 local polynomial fitting polynomial regression derivative estimation P-VALUE
原文传递
Asymptotics for partly linear regression with dependent samples and ARCH errors:consistency with rates 被引量:3
2
作者 卢祖帝 I.Gijbels 《Science China Mathematics》 SCIE 2001年第2期168-183,共16页
Partly linear regression model is useful in practice, but littleis investigated in the literature to adapt it to the real data which are dependent and conditionally heteroscedastic. In this paper, the estimators of th... Partly linear regression model is useful in practice, but littleis investigated in the literature to adapt it to the real data which are dependent and conditionally heteroscedastic. In this paper, the estimators of the regression components are constructed via local polynomial fitting and the large sample properties are explored. Under certain mild regularities, the conditions are obtained to ensure that the estimators of the nonparametric component and its derivatives are consistent up to the convergence rates which are optimal in the i.i.d. case, and the estimator of the parametric component is root-n consistent with the same rate as for parametric model. The technique adopted in the proof differs from that used and corrects the errors in the reference by Hamilton and Truong under i.i.d. samples. 展开更多
关键词 ARCH (GARCH) errors dependent samples local polynomial fitting convergence rates partly linear model root-n consistency
原文传递
Numerical Discretization-Based Kernel Type Estimation Methods for Ordinary Differential Equation Models 被引量:1
3
作者 Tao HU Yan Ping QIU +1 位作者 Heng Jian CUI Li Hong CHEN 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2015年第8期1233-1254,共22页
We consider the problem of parameter estimation in both linear and nonlinear ordinary differential equation(ODE) models. Nonlinear ODE models are widely used in applications. But their analytic solutions are usually... We consider the problem of parameter estimation in both linear and nonlinear ordinary differential equation(ODE) models. Nonlinear ODE models are widely used in applications. But their analytic solutions are usually not available. Thus regular methods usually depend on repetitive use of numerical solutions which bring huge computational cost. We proposed a new two-stage approach which includes a smoothing method(kernel smoothing or local polynomial fitting) in the first stage, and a numerical discretization method(Eulers discretization method, the trapezoidal discretization method,or the Runge–Kutta discretization method) in the second stage. Through numerical simulations, we find the proposed method gains a proper balance between estimation accuracy and computational cost.Asymptotic properties are also presented, which show the consistency and asymptotic normality of estimators under some mild conditions. The proposed method is compared to existing methods in term of accuracy and computational cost. The simulation results show that the estimators with local linear smoothing in the first stage and trapezoidal discretization in the second stage have the lowest average relative errors. We apply the proposed method to HIV dynamics data to illustrate the practicability of the estimator. 展开更多
关键词 Nonparametric regression kernel smoothing local polynomial fitting parametric identification ordinary differential equation nume
原文传递
Confidence Intervals of Variance Functions in Generalized Linear Model
4
作者 Yong Zhou Dao-ji Li 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 2006年第3期353-368,共16页
In this paper we introduce an appealing nonparametric method for estimating variance and conditional variance functions in generalized linear models (GLMs), when designs are fixed points and random variables respect... In this paper we introduce an appealing nonparametric method for estimating variance and conditional variance functions in generalized linear models (GLMs), when designs are fixed points and random variables respectively, Bias-corrected confidence bands are proposed for the (conditional) variance by local linear smoothers. Nonparametric techniques are developed in deriving the bias-corrected confidence intervals of the (conditional) variance. The asymptotic distribution of the proposed estimator is established and show that the bias-corrected confidence bands asymptotically have the correct coverage properties. A small simulation is performed when unknown regression parameter is estimated by nonparametric quasi-likelihood. The results are also applicable to nonparamctric autoregressive times series model with heteroscedastic conditional variance. 展开更多
关键词 Nonlinear time series model variance function conditional heteroscedastie variance generalized linear model local polynomial fitting Α-MIXING
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部