期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Analysis of the Relationship between Vertical Distribution of Four Automatic Stations and Local Precipitation in Taihang Mountain of Linzhou
1
作者 Wang Jianxin Zhang Qishao +1 位作者 Zhao Xuedong Zhang Wenhong 《Meteorological and Environmental Research》 CAS 2014年第1期24-27,35,共5页
[ Objective] The reseamh aimed to analyze the relationship between vertical distribution of four automatic stations and local precipitation in Taihang Mountain of Linzhou. [ Method] Using mesoscale detection and stati... [ Objective] The reseamh aimed to analyze the relationship between vertical distribution of four automatic stations and local precipitation in Taihang Mountain of Linzhou. [ Method] Using mesoscale detection and statistical data of the automatic stations in Henan, the geographical distribution of the precipitation affected by underlying surface in mountainous area of Linzhou was analyzed. [ Result] Surface mesoscale wind field convergence line formed by thermal action of inhomogeneous underlying surface and mountainous terrain and upward movement played the strengthening role to the low-level jet. They affected formation and development of strong convective weather. The geographic distribution of precipitation in mountainous area was highly affected by the terrain, and rainfall, precipitation days and intensity in mountainous area were significantly greater than that in the surrounding hills region. In particular, rainfall on the windward slope significantly increased, and rainfall increased as mountain height within a certain height. [ Conclusion] Hourly ground data analysis at automatic stations had very good forecast indication role in formation, development and dissipation of heavy rain in mountainous areas. 展开更多
关键词 Taihang Mountain of Linzhou Vertical distribution local precipitation TERRAIN China
下载PDF
Assessment of total and extreme precipitation over central Asia via statistical downscaling: Added value and multi-model ensemble projection
2
作者 Li-Jun FAN Zhong-Wei YAN +1 位作者 Deliang CHEN Zhen LI 《Advances in Climate Change Research》 SCIE CSCD 2023年第1期62-76,共15页
Central Asia(CA)is highly sensitive and vulnerable to changes in precipitation due to global warming,so the projection of precipitation extremes is essential for local climate risk assessment.However,global and region... Central Asia(CA)is highly sensitive and vulnerable to changes in precipitation due to global warming,so the projection of precipitation extremes is essential for local climate risk assessment.However,global and regional climate models often fail to reproduce the observed daily precipitation distribution and hence extremes,especially in areas with complex terrain.In this study,we proposed a statistical downscaling(SD)model based on quantile delta mapping to assess and project eight precipitation indices at 73 meteorological stations across CA driven by ERA5 reanalysis data and simulations of 10 global climate models(GCMs)for present and future(2081-2100)periods under two shared socioeconomic pathways(SSP245 and SSP585).The reanalysis data and raw GCM outputs clearly underestimate mean precipitation intensity(SDII)and maximum 1-day precipitation(RX1DAY)and overestimate the number of wet days(R1MM)and maximum consecutive wet days(CWD)at stations across CA.However,the SD model effectively reduces the biases and RMSEs of the modeled precipitation indices compared to the observations.Also it effectively adjusts the distributional biases in the downscaled daily precipitation and indices at the stations across CA.In addition,it is skilled in capturing the spatial patterns of the observed precipitation indices.Obviously,SDII and RX1DAY are improved by the SD model,especially in the southeastern mountainous area.Under the intermediate scenario(SSP245),our SD multi-model ensemble projections project significant and robust increases in SDII and total extreme precipitation(R95PTOT)of 0.5 mm d^(-1) and 19.7 mm,respectively,over CA at the end of the 21st century(2081-2100)compared to the present values(1995-2014).More pronounced increases in indices R95PTOT,SDII,number of very wet days(R10MM),and RX1DAY are projected under the higher emission scenario(SSP585),particularly in the mountainous southeastern region.The SD model suggested that SDII and RX1DAY will likely rise more rapidly than those projected by previous model simulations over CA during the period 2081-2100.The SD projection of the possible future changes in precipitation and extremes improves the knowledge base for local risk management and climate change adaptation in CA. 展开更多
关键词 local precipitation extremes Statistical downscaling Multi-model ensemble projection Robustness and uncertainty Central Asia
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部