The evolution of mechanical properties,localized corrosion resistance of a high purity Al-Zn-Mg-Cu alloy during non-isothermal aging(NIA)was investigated by hardness test,electrical conductivity test,tensile test,inte...The evolution of mechanical properties,localized corrosion resistance of a high purity Al-Zn-Mg-Cu alloy during non-isothermal aging(NIA)was investigated by hardness test,electrical conductivity test,tensile test,intergranular corrosion test,exfoliation corrosion test,slow strain rate tensile test and electrochemical test,and the mechanism has been discussed based on microstructure examination by optical microscopy,electron back scattered diffraction,scanning electron microscopy and scanning transmission electron microscopy.The NIA treatment includes a heating stage from 40℃to 180℃with a rate of 20℃/h and a cooling stage from 180℃to 40℃with a rate of 10℃/h.The results show that the hardness and strength increase rapidly during the heating stage of NIA since the increasing temperature favors the nucleation and the growth of strengthening precipitates and promotes the transformation of Guinier-Preston(GPI)zones toη'phase.During the cooling stage,the sizes ofη'phase increase with a little change in the number density,leading to a further slight increase of the hardness and strength.As NIA proceeds,the corroded morphology in the alloy changes from a layering feature to a wavy feature,the maximum corrosion depth decreases,and the reason has been analyzed based on the microstructural and microchemical feature of precipitates at grain boundaries and subgrain boundaries.展开更多
The squeeze casting method with local pressure compensation was proposed to form a flywheel housing component with a weight of 35 kg.The numerical simulation,microstructure observation and phase characterization were ...The squeeze casting method with local pressure compensation was proposed to form a flywheel housing component with a weight of 35 kg.The numerical simulation,microstructure observation and phase characterization were performed,and the influence of local pressure compensation on feeding of thick-wall position,microstructure and mechanical properties of the formed components were discussed.Results show that the molten metal keeps a good fluidity and the filling is complete during the filling process.Although the solidification at thick-wall positions of the mounting ports is slow,the local pressure compensation effectively realizes the local forced feeding,significantly eliminating the shrinkage cavity defects.In the microstructure of AlSi9Mg alloy,α-Al primarily consists of fragmented dendrites and rosette grains,while eutectic Si predominantly comprises needles and short rods.The impact of local pressure compensation on strength is relatively minimal,yet its influence on elongation is considerable.Following local pressure compensation,the average elongation at the compensated areas is 9.18%,which represents a 44.90%higher than that before compensation.The average tensile strength is 209.1 MPa,and the average yield strength is 100.6 MPa.The local pressure compensation can significantly reduce or even eliminate the internal defects in the 35 kg large-weight components formed by squeeze casting.展开更多
The Mbouda alluvial deposit is located at the foot of the Bamboutos mountains (West Cameroon) where three types of clayey materials are widespread. The populations collect these clays in their natural state in view of...The Mbouda alluvial deposit is located at the foot of the Bamboutos mountains (West Cameroon) where three types of clayey materials are widespread. The populations collect these clays in their natural state in view of constructions using fired bricks or compressed blocks. Unfortunately, these buildings are not strong. This study investigates the causes of the strengthlessness of buildings and suggests solutions to overcome the difficulty. The research content includes field and laboratory studies. The methodology consists of sampling black (AN), white (AB) and red (AR) clays specimens identified in the study area and analysing them simultaneously at MIPROMALO (Cameroon) and at ACME LAB in Vancouver (Canada). The results obtained show a high sand content in the samples AN (64%), AB (55.2%), AR (30.9%). The compressive strength of the built specimens is low at 900˚C considered as the traditional firing temperature AN (0.94 MPa), AB (5.25 MPa), AR (2.18 MPa). The mineralogical series are identically made by kaolinite, chlorite, gibbsite, quartz, muscovite, biotite, goethite, magnetite and hematite. Silica (SiO2) presents higher contents AN (52.87%), AB (48.02%), AR (47.68%) followed by alumina (Al2O3) AN (29.96%), AB (28.13%), AR (24.72%). The other elements are poorly represented.展开更多
Localization due to disorder has been one of the most intriguing theoretical concepts that evolved in condensed matter physics.Here,we expand the theory of localization by considering two types of disorders at the sam...Localization due to disorder has been one of the most intriguing theoretical concepts that evolved in condensed matter physics.Here,we expand the theory of localization by considering two types of disorders at the same time,namely,the original Anderson’s disorder and the structural defect disorder,which has been suggested to be a key component in recently discovered two-dimensional amorphous materials.While increasing the degree of both disorders could induce localization of wavefunction in real space,we find that a small degree of structural defect disorder can significantly enhance the localization.As the degree of structural defect disorder increases,localized states quickly appear within the extended phase to enter a broad crossover region with mixed phases.We establish two-dimensional diagrams for the wavefunction localization and conductivity to highlight the interplay between the two types of disorders.Our theoretical model provides a comprehensive understanding of localization in two-dimensional amorphous materials and highlights the promising tunability of their transport properties.展开更多
To improve the microstructure and properties of the electron beam welded joints, the vacuum or furnace whole post weld heat treatment (FWPWHT) usually should be done on it. The electron beam local post weld heat treat...To improve the microstructure and properties of the electron beam welded joints, the vacuum or furnace whole post weld heat treatment (FWPWHT) usually should be done on it. The electron beam local post weld heat treatment (EBLPWHT) is a rather new heat treatment procedure that provides the advantages of high precision, flexibility and efficiency, energy saving and higher productivity. In this paper, the microstructure, mechanical properties, fracture toughness and fatigue properties of electron beam welded joints of 30CrMnSiNi2A steel in as-welded (AW) and EBLPWHT conditions have been investigated respectively. The results show that the microstructures of different zones of joints in as-welded condition are changed by EBLPWHT procedure, in which the welds from coarse needle martensite into lath-shaped martensite; the main structures of heat affected zones (HAZ) from lath-shaped martensite into lower bainite. The properties of welded joints can be improved by the EBLPWHT in some extent, especially the fracture toughness of the welds and the fatigue crack resistance of welded joints can be sufficiently improved. However, more appropriate heat treatment parameters of the EBLPWHT have to be studied in order to increase the mechanical properties of base metal near by the HAZ.展开更多
The local inhomogeneity of the stir zone in friction stir welded face-centered cubic metal was investigated,which has multiple activated slip systems during plastic deformation,by selecting commercial AA1050 aluminum ...The local inhomogeneity of the stir zone in friction stir welded face-centered cubic metal was investigated,which has multiple activated slip systems during plastic deformation,by selecting commercial AA1050 aluminum alloy as an ideal experimental material.The local inhomogeneity was evaluated by uniaxial tensile tests using small samples with a 1 mm gauge length.The corresponding microstructural parameters such as grain size,misorientation angle distribution,and micro-texture,were quantified by the backscattered electron diffraction technique.A comprehensive model was used to reveal the microstructure−mechanical property relationship.The experimental results showed that the uniaxial tensile property changes significantly across the weld.The maximum ultimate tensile strength(UTS)occurred in the center of the stir zone,which was 99.0 MPa.The weakest regions were located at the two sides of the stir zone.The largest difference value in UTS reached 14.9 MPa,accounting for 15%of the maximum UTS.The analysis on the structure−mechanical property relationship suggests that the micro-texture change with the location formed during the rotational material flow is the main reason for the local inhomogeneity.展开更多
Image interpolation plays an important role in image process applications. A novel support vector machines (SVMs) based interpolation scheme is proposed with increasing the local spatial properties in the source ima...Image interpolation plays an important role in image process applications. A novel support vector machines (SVMs) based interpolation scheme is proposed with increasing the local spatial properties in the source image as SVMs input patterns. After the proper neighbor pixels region is selected, trained support vectors are obtained by training SVMs with local spatial properties that include the average of the neighbor pixels gray values and the gray value variations between neighbor pixels in the selected region. The support vector regression machines are employed to estimate the gray values of unknown pixels with the neighbor pixels and local spatial properties information. Some interpolation experiments show that the proposed scheme is superior to the linear, cubic, neural network and other SVMs based interpolation approaches.展开更多
Fluid-conveying pipe systems are widely used in various equipments to transport matter and energy.Due to the fluid–structure interaction effect,the fluid acting on the pipe wall is easy to produce strong vibration an...Fluid-conveying pipe systems are widely used in various equipments to transport matter and energy.Due to the fluid–structure interaction effect,the fluid acting on the pipe wall is easy to produce strong vibration and noise,which have a serious influence on the safety and concealment of the equipment.Based on the theory of phononic crystals,this paper studies the vibration transfer properties of a locally resonant(LR)pipe under the condition of fluid–structure interaction.The band structure and the vibration transfer properties of a finite periodic pipe are obtained by the transfer matrix method.Further,the different impact excitation and fluid–structure interaction effect on the frequency range of vibration attenuation properties of the LR pipe are mainly considered and calculated by the finite element model.The results show that the existence of a low-frequency vibration bandgap in the LR pipe can effectively suppress the vibration propagation under external impact and fluid impact excitation,and the vibration reduction frequency range is near the bandgap under the fluid–structure interaction effect.Finally,the pipe impact experiment was performed to verify the effective attenuation of the LR structure to the impact excitation,and to validate the finite element model.The research results provide a technical reference for the vibration control of the fluid-conveying pipe systems that need to consider blast load and fluid impact.展开更多
In this paper we study the three new asymptotic-norming properties which are called locally asymptotic-norming property k,k=Ⅰ, Ⅱ,Ⅲ, and discuss the relationship between the locally asymptotic-norming property and t...In this paper we study the three new asymptotic-norming properties which are called locally asymptotic-norming property k,k=Ⅰ, Ⅱ,Ⅲ, and discuss the relationship between the locally asymptotic-norming property and the Kadec Property.展开更多
The relationship between some smoothness and weak asymptotic-norming properties of dual Banach space X is studied. The main results are the following. Suppose that X is weakly sequential complete Banach space, then X...The relationship between some smoothness and weak asymptotic-norming properties of dual Banach space X is studied. The main results are the following. Suppose that X is weakly sequential complete Banach space, then X is Frechet differentiable if and only if X has B (X)- ANP -I, X is quasi-Frechet differentiable if and only if X has B(X)- ANP -H and X is very smooth if and only if X has B(X)- ANP -Ⅱ. A new local asymptotic-norming property is also introduced, and the relationship among this one and other local asymptotic-norming properties and some topological properties is discussed. In addition, this paper gives a negative answer to the open question raised by Hu and Lin in Bull. Austral. Math. Soc,45,1992.展开更多
The hot or cold processing would induce the change and the inhomogeneous of the material mechanical properties in the local processing region of the structure,and it is difficult to obtain the specific mechanical prop...The hot or cold processing would induce the change and the inhomogeneous of the material mechanical properties in the local processing region of the structure,and it is difficult to obtain the specific mechanical properties in these regions by using the traditional material tensile test.To accurately get actual material mechanical properties in the local region of structure,a micro-indentation test system incorporated by an electronic universal material test device has been established.An indenter displacement sensor and a group of special micro-indenter assemblies are estab-lished.A numerical indentation inversion analysis method by using ABAQUS software is also proposed in this study.Based on the above test system and analysis platform,an approach to obtaining material mechanical properties in the local region of structures is proposed and established.The ball indentation test is performed and combined with the energy method by using various changed mechanical properties of 316L austenitic stainless steel under differ-ent elongations.The investigated results indicate that the material mechanical properties and the micro-indentation morphological changes have evidently relevance.Compared with the tensile test results,the deviations of material mechanical parameters,such as hardness H,the hardening exponent n,the yield strength σy and others are within 5%obtained through the indentation test and the finite element analysis.It provides an effective and convenient method for obtaining the actual material mechanical properties in the local processing region of the structure.展开更多
In this work, hierarchical BiOBr<sub>1<span style="white-space:nowrap;">−</span>x</sub>I<sub>x</sub>/BiOBr heterojunction photocatalyst with a microsphere morphol...In this work, hierarchical BiOBr<sub>1<span style="white-space:nowrap;">−</span>x</sub>I<sub>x</sub>/BiOBr heterojunction photocatalyst with a microsphere morphology was synthesized by a facile solvothermal process. It demonstrated that the local structure of the photocatalysts was highly distorted due to the substitution of bromide ions by iodine ions. The photocatalytic properties were evaluated by the photodecomposition of aqueous phenol solution under visible-light irradiation. The results indicated that all the composite photocatalysts exhibited high photocatalytic activity. In particularly, the BiOBr<sub>1<span style="white-space:nowrap;">−</span>x</sub>I<sub>x</sub>/BiOBr (x = 0.25) sample exhibited over 92% degradation efficiency of phenol within 150 min, which is 24.6 and 3.08 fold enhancement in the photocatalytic activity over the pure phased BiOBr and BiOI, respectively. Moreover, this excellent photocatalytic property can be expanded to other colorless organic contaminants, verifying the common applicability of BiOBr<sub>1<span style="white-space:nowrap;">−</span>x</sub>I<sub>x</sub>/BiOBr (x = 0.25) as an excellent visible-light photocatalyst for organics decomposition. The significant improvement in the photocatalytic activity can be explained by the high efficiency of charge separation due to the enhancement in the internal electric fields and band match that comes from the local structure distortion. This work provides valuable information for the design of highly active photocatalysts toward the environmental remediation.展开更多
Property tax income of local authorities has become more challenging due to robust developments. Property tax revenue is the main income for local authorities that are used to pay for services and maintenance in the l...Property tax income of local authorities has become more challenging due to robust developments. Property tax revenue is the main income for local authorities that are used to pay for services and maintenance in the local authority administrative areas. However, the amount of revenue collected is decreasing due to the serious problem of property tax arrears that affects the administrative system and as a corollary, the delivery of services by local authorities. The performance measurement of property tax is very important in order to manage the services, and for maintenance and development of sustainable local authorities. Therefore, this paper represents a review of the Malaysian local authority property tax collection performance. The rating system is applied to address the performance of property tax collection in Malaysia. The result revealed that most of the property tax collection in Malaysia performed under inadequate level. Property tax collection statistics for the research include the total revenue and property tax arrears for each local authority in Malaysia within five years from 2004 to 2007. It is expected that this property tax performance will be employed as a basis to pursue the appropriate, innovative, and creative approaches for local authorities in Malaysia.展开更多
Living in a habitat with comfort is requested by all. Cinder block bricks have poor thermal properties, leading people to use fan heaters and air conditioners to regain comfort. To overcome this problem of thermal dis...Living in a habitat with comfort is requested by all. Cinder block bricks have poor thermal properties, leading people to use fan heaters and air conditioners to regain comfort. To overcome this problem of thermal discomfort in buildings, we used lightweight concrete such as foamed concrete which is a material that has improved thermal properties for thermal comfort. In addition, this material was compared with local materials used for the construction of buildings such as BTC, adobe and BLT mixed with binders. The results showed that foamed concrete is a material that has good thermal and mechanical properties compared to local materials mixed with binders. The foamed concrete having acceptable thermo-mechanical properties was that having a density of 930 kg/m<sup>3</sup>. It has a thermal resistance of 0.4 m<sup>2</sup>·K/W for a thickness of 20 cm. The foamed concrete having acceptable thermo-mechanical properties was that having a density of 930 kg/m3</sup>. It has a thermal resistance of 0.4 m2</sup>·K/W for a thickness of 20 cm. For sunshine on a daily cycle equal to 12 hours, the characteristic thickness achieved by this material is 7.29 cm. It also has a shallow depth of heat diffusion having a lower thickness than other materials. This shows that foamed concrete is a promising material for the construction of buildings.展开更多
The current study focused on the utilization of local clay for synthesis and characterization of meta-kaolin based geopolymers with and without nano-silica. The control geopolymers, for a compressive strength of 30 MP...The current study focused on the utilization of local clay for synthesis and characterization of meta-kaolin based geopolymers with and without nano-silica. The control geopolymers, for a compressive strength of 30 MPa, were optimized by using Liquid/Solid ratio of 0.55, NaOH concentration of 10 M and curing at 80<span style="white-space:nowrap;">°</span>C. The nano silica was added in an extended range of 1%, 2%, 3%, 5%, 7% and 10%. The synthesized nano-silica metakaolin based geopolymers w<span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">as</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> investigated by using compressive strength, XRD, XRF, FTIR, SEM, MIP, TG, UV/VIS spectroscopy, in addition to density, water absorption and initial setting times. The results indicated an increase in the compressive strength value with the incorporation of nano-silica in geopolymer mixes until the optimum percentage of 5%, while the 10% addition of nano-silica decreased the compressive strength by 5% as compared to the control geopolymer. The increase in the compressive strength was accredited to the increase in the content of N-A-S-H gel and the amorphous structure as shown by XRD and FTIR analysis. In addition, the optical transmittance analysis, MIP and SEM scans along with the results of density and water absorption have clearly shown the densification of the matrix formed for the optimal percentage of nano-silica. However, the initial setting time was found to reduce substantially with increase of nano-silica content. Moreover, the TG results have shown the 5% nano-added geopolymers to have greater thermal stability as compared to reference geopolymer</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">s</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">. Finally, the adopted methodology in this research has shown that 5% nano-silica, is the optimal result for the synthesis and the production of local meta kaolin based geopolymer, with regard to the improvement of physical properties, micro structure and compressive strength.</span></span></span>展开更多
基金Project(202302AB080024)supported by the Department of Science and Technology of Yunnan Province,China。
文摘The evolution of mechanical properties,localized corrosion resistance of a high purity Al-Zn-Mg-Cu alloy during non-isothermal aging(NIA)was investigated by hardness test,electrical conductivity test,tensile test,intergranular corrosion test,exfoliation corrosion test,slow strain rate tensile test and electrochemical test,and the mechanism has been discussed based on microstructure examination by optical microscopy,electron back scattered diffraction,scanning electron microscopy and scanning transmission electron microscopy.The NIA treatment includes a heating stage from 40℃to 180℃with a rate of 20℃/h and a cooling stage from 180℃to 40℃with a rate of 10℃/h.The results show that the hardness and strength increase rapidly during the heating stage of NIA since the increasing temperature favors the nucleation and the growth of strengthening precipitates and promotes the transformation of Guinier-Preston(GPI)zones toη'phase.During the cooling stage,the sizes ofη'phase increase with a little change in the number density,leading to a further slight increase of the hardness and strength.As NIA proceeds,the corroded morphology in the alloy changes from a layering feature to a wavy feature,the maximum corrosion depth decreases,and the reason has been analyzed based on the microstructural and microchemical feature of precipitates at grain boundaries and subgrain boundaries.
基金supported by the National Key R&D Program of China(No.2022YFB3404204)the National Natural Science Foundation of China(NSFC)under Grant Nos.U2241232,U2341253 and 52375317.
文摘The squeeze casting method with local pressure compensation was proposed to form a flywheel housing component with a weight of 35 kg.The numerical simulation,microstructure observation and phase characterization were performed,and the influence of local pressure compensation on feeding of thick-wall position,microstructure and mechanical properties of the formed components were discussed.Results show that the molten metal keeps a good fluidity and the filling is complete during the filling process.Although the solidification at thick-wall positions of the mounting ports is slow,the local pressure compensation effectively realizes the local forced feeding,significantly eliminating the shrinkage cavity defects.In the microstructure of AlSi9Mg alloy,α-Al primarily consists of fragmented dendrites and rosette grains,while eutectic Si predominantly comprises needles and short rods.The impact of local pressure compensation on strength is relatively minimal,yet its influence on elongation is considerable.Following local pressure compensation,the average elongation at the compensated areas is 9.18%,which represents a 44.90%higher than that before compensation.The average tensile strength is 209.1 MPa,and the average yield strength is 100.6 MPa.The local pressure compensation can significantly reduce or even eliminate the internal defects in the 35 kg large-weight components formed by squeeze casting.
文摘The Mbouda alluvial deposit is located at the foot of the Bamboutos mountains (West Cameroon) where three types of clayey materials are widespread. The populations collect these clays in their natural state in view of constructions using fired bricks or compressed blocks. Unfortunately, these buildings are not strong. This study investigates the causes of the strengthlessness of buildings and suggests solutions to overcome the difficulty. The research content includes field and laboratory studies. The methodology consists of sampling black (AN), white (AB) and red (AR) clays specimens identified in the study area and analysing them simultaneously at MIPROMALO (Cameroon) and at ACME LAB in Vancouver (Canada). The results obtained show a high sand content in the samples AN (64%), AB (55.2%), AR (30.9%). The compressive strength of the built specimens is low at 900˚C considered as the traditional firing temperature AN (0.94 MPa), AB (5.25 MPa), AR (2.18 MPa). The mineralogical series are identically made by kaolinite, chlorite, gibbsite, quartz, muscovite, biotite, goethite, magnetite and hematite. Silica (SiO2) presents higher contents AN (52.87%), AB (48.02%), AR (47.68%) followed by alumina (Al2O3) AN (29.96%), AB (28.13%), AR (24.72%). The other elements are poorly represented.
基金supported by the National Natural Science Foundation of China(Grant No.92165101)the National Key R&D Program of China(Grant No.2021YFA1400500)+1 种基金the Strategic Priority Research Program of Chinese Academy of Sciences(Grant No.XDB33000000)the Beijing Natural Science Foundation(Grant No.JQ22001).We are grateful for computational resources supported by High-performance Computing Platform of Peking University.
文摘Localization due to disorder has been one of the most intriguing theoretical concepts that evolved in condensed matter physics.Here,we expand the theory of localization by considering two types of disorders at the same time,namely,the original Anderson’s disorder and the structural defect disorder,which has been suggested to be a key component in recently discovered two-dimensional amorphous materials.While increasing the degree of both disorders could induce localization of wavefunction in real space,we find that a small degree of structural defect disorder can significantly enhance the localization.As the degree of structural defect disorder increases,localized states quickly appear within the extended phase to enter a broad crossover region with mixed phases.We establish two-dimensional diagrams for the wavefunction localization and conductivity to highlight the interplay between the two types of disorders.Our theoretical model provides a comprehensive understanding of localization in two-dimensional amorphous materials and highlights the promising tunability of their transport properties.
文摘To improve the microstructure and properties of the electron beam welded joints, the vacuum or furnace whole post weld heat treatment (FWPWHT) usually should be done on it. The electron beam local post weld heat treatment (EBLPWHT) is a rather new heat treatment procedure that provides the advantages of high precision, flexibility and efficiency, energy saving and higher productivity. In this paper, the microstructure, mechanical properties, fracture toughness and fatigue properties of electron beam welded joints of 30CrMnSiNi2A steel in as-welded (AW) and EBLPWHT conditions have been investigated respectively. The results show that the microstructures of different zones of joints in as-welded condition are changed by EBLPWHT procedure, in which the welds from coarse needle martensite into lath-shaped martensite; the main structures of heat affected zones (HAZ) from lath-shaped martensite into lower bainite. The properties of welded joints can be improved by the EBLPWHT in some extent, especially the fracture toughness of the welds and the fatigue crack resistance of welded joints can be sufficiently improved. However, more appropriate heat treatment parameters of the EBLPWHT have to be studied in order to increase the mechanical properties of base metal near by the HAZ.
基金Project(51905437)supported by the National Natural Science Foundation of ChinaProject(2019M653726)supported by the China Postdoctoral Science FoundationProject(3102019QD0407)supported by the Fundamental Research Funds for the Central Universities,China。
文摘The local inhomogeneity of the stir zone in friction stir welded face-centered cubic metal was investigated,which has multiple activated slip systems during plastic deformation,by selecting commercial AA1050 aluminum alloy as an ideal experimental material.The local inhomogeneity was evaluated by uniaxial tensile tests using small samples with a 1 mm gauge length.The corresponding microstructural parameters such as grain size,misorientation angle distribution,and micro-texture,were quantified by the backscattered electron diffraction technique.A comprehensive model was used to reveal the microstructure−mechanical property relationship.The experimental results showed that the uniaxial tensile property changes significantly across the weld.The maximum ultimate tensile strength(UTS)occurred in the center of the stir zone,which was 99.0 MPa.The weakest regions were located at the two sides of the stir zone.The largest difference value in UTS reached 14.9 MPa,accounting for 15%of the maximum UTS.The analysis on the structure−mechanical property relationship suggests that the micro-texture change with the location formed during the rotational material flow is the main reason for the local inhomogeneity.
文摘Image interpolation plays an important role in image process applications. A novel support vector machines (SVMs) based interpolation scheme is proposed with increasing the local spatial properties in the source image as SVMs input patterns. After the proper neighbor pixels region is selected, trained support vectors are obtained by training SVMs with local spatial properties that include the average of the neighbor pixels gray values and the gray value variations between neighbor pixels in the selected region. The support vector regression machines are employed to estimate the gray values of unknown pixels with the neighbor pixels and local spatial properties information. Some interpolation experiments show that the proposed scheme is superior to the linear, cubic, neural network and other SVMs based interpolation approaches.
基金Project supported by the National Natural Science Foundation of China(Grant No.11872371)Major Program of the National Natural Science Foundation of China(Grant Nos.11991032 and 11991034).
文摘Fluid-conveying pipe systems are widely used in various equipments to transport matter and energy.Due to the fluid–structure interaction effect,the fluid acting on the pipe wall is easy to produce strong vibration and noise,which have a serious influence on the safety and concealment of the equipment.Based on the theory of phononic crystals,this paper studies the vibration transfer properties of a locally resonant(LR)pipe under the condition of fluid–structure interaction.The band structure and the vibration transfer properties of a finite periodic pipe are obtained by the transfer matrix method.Further,the different impact excitation and fluid–structure interaction effect on the frequency range of vibration attenuation properties of the LR pipe are mainly considered and calculated by the finite element model.The results show that the existence of a low-frequency vibration bandgap in the LR pipe can effectively suppress the vibration propagation under external impact and fluid impact excitation,and the vibration reduction frequency range is near the bandgap under the fluid–structure interaction effect.Finally,the pipe impact experiment was performed to verify the effective attenuation of the LR structure to the impact excitation,and to validate the finite element model.The research results provide a technical reference for the vibration control of the fluid-conveying pipe systems that need to consider blast load and fluid impact.
文摘In this paper we study the three new asymptotic-norming properties which are called locally asymptotic-norming property k,k=Ⅰ, Ⅱ,Ⅲ, and discuss the relationship between the locally asymptotic-norming property and the Kadec Property.
基金National Natural Science Foundation of China(10671118) the Natural Science Foundation of Shanghai Education Committee (06NZ016)
文摘The relationship between some smoothness and weak asymptotic-norming properties of dual Banach space X is studied. The main results are the following. Suppose that X is weakly sequential complete Banach space, then X is Frechet differentiable if and only if X has B (X)- ANP -I, X is quasi-Frechet differentiable if and only if X has B(X)- ANP -H and X is very smooth if and only if X has B(X)- ANP -Ⅱ. A new local asymptotic-norming property is also introduced, and the relationship among this one and other local asymptotic-norming properties and some topological properties is discussed. In addition, this paper gives a negative answer to the open question raised by Hu and Lin in Bull. Austral. Math. Soc,45,1992.
基金Supported by National Natural Science Foundation of China(Grant No.52075434)Key R&D Projects in Shaanxi Province(Grant No.2021KW-36).
文摘The hot or cold processing would induce the change and the inhomogeneous of the material mechanical properties in the local processing region of the structure,and it is difficult to obtain the specific mechanical properties in these regions by using the traditional material tensile test.To accurately get actual material mechanical properties in the local region of structure,a micro-indentation test system incorporated by an electronic universal material test device has been established.An indenter displacement sensor and a group of special micro-indenter assemblies are estab-lished.A numerical indentation inversion analysis method by using ABAQUS software is also proposed in this study.Based on the above test system and analysis platform,an approach to obtaining material mechanical properties in the local region of structures is proposed and established.The ball indentation test is performed and combined with the energy method by using various changed mechanical properties of 316L austenitic stainless steel under differ-ent elongations.The investigated results indicate that the material mechanical properties and the micro-indentation morphological changes have evidently relevance.Compared with the tensile test results,the deviations of material mechanical parameters,such as hardness H,the hardening exponent n,the yield strength σy and others are within 5%obtained through the indentation test and the finite element analysis.It provides an effective and convenient method for obtaining the actual material mechanical properties in the local processing region of the structure.
文摘In this work, hierarchical BiOBr<sub>1<span style="white-space:nowrap;">−</span>x</sub>I<sub>x</sub>/BiOBr heterojunction photocatalyst with a microsphere morphology was synthesized by a facile solvothermal process. It demonstrated that the local structure of the photocatalysts was highly distorted due to the substitution of bromide ions by iodine ions. The photocatalytic properties were evaluated by the photodecomposition of aqueous phenol solution under visible-light irradiation. The results indicated that all the composite photocatalysts exhibited high photocatalytic activity. In particularly, the BiOBr<sub>1<span style="white-space:nowrap;">−</span>x</sub>I<sub>x</sub>/BiOBr (x = 0.25) sample exhibited over 92% degradation efficiency of phenol within 150 min, which is 24.6 and 3.08 fold enhancement in the photocatalytic activity over the pure phased BiOBr and BiOI, respectively. Moreover, this excellent photocatalytic property can be expanded to other colorless organic contaminants, verifying the common applicability of BiOBr<sub>1<span style="white-space:nowrap;">−</span>x</sub>I<sub>x</sub>/BiOBr (x = 0.25) as an excellent visible-light photocatalyst for organics decomposition. The significant improvement in the photocatalytic activity can be explained by the high efficiency of charge separation due to the enhancement in the internal electric fields and band match that comes from the local structure distortion. This work provides valuable information for the design of highly active photocatalysts toward the environmental remediation.
文摘Property tax income of local authorities has become more challenging due to robust developments. Property tax revenue is the main income for local authorities that are used to pay for services and maintenance in the local authority administrative areas. However, the amount of revenue collected is decreasing due to the serious problem of property tax arrears that affects the administrative system and as a corollary, the delivery of services by local authorities. The performance measurement of property tax is very important in order to manage the services, and for maintenance and development of sustainable local authorities. Therefore, this paper represents a review of the Malaysian local authority property tax collection performance. The rating system is applied to address the performance of property tax collection in Malaysia. The result revealed that most of the property tax collection in Malaysia performed under inadequate level. Property tax collection statistics for the research include the total revenue and property tax arrears for each local authority in Malaysia within five years from 2004 to 2007. It is expected that this property tax performance will be employed as a basis to pursue the appropriate, innovative, and creative approaches for local authorities in Malaysia.
文摘Living in a habitat with comfort is requested by all. Cinder block bricks have poor thermal properties, leading people to use fan heaters and air conditioners to regain comfort. To overcome this problem of thermal discomfort in buildings, we used lightweight concrete such as foamed concrete which is a material that has improved thermal properties for thermal comfort. In addition, this material was compared with local materials used for the construction of buildings such as BTC, adobe and BLT mixed with binders. The results showed that foamed concrete is a material that has good thermal and mechanical properties compared to local materials mixed with binders. The foamed concrete having acceptable thermo-mechanical properties was that having a density of 930 kg/m<sup>3</sup>. It has a thermal resistance of 0.4 m<sup>2</sup>·K/W for a thickness of 20 cm. The foamed concrete having acceptable thermo-mechanical properties was that having a density of 930 kg/m3</sup>. It has a thermal resistance of 0.4 m2</sup>·K/W for a thickness of 20 cm. For sunshine on a daily cycle equal to 12 hours, the characteristic thickness achieved by this material is 7.29 cm. It also has a shallow depth of heat diffusion having a lower thickness than other materials. This shows that foamed concrete is a promising material for the construction of buildings.
文摘The current study focused on the utilization of local clay for synthesis and characterization of meta-kaolin based geopolymers with and without nano-silica. The control geopolymers, for a compressive strength of 30 MPa, were optimized by using Liquid/Solid ratio of 0.55, NaOH concentration of 10 M and curing at 80<span style="white-space:nowrap;">°</span>C. The nano silica was added in an extended range of 1%, 2%, 3%, 5%, 7% and 10%. The synthesized nano-silica metakaolin based geopolymers w<span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">as</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> investigated by using compressive strength, XRD, XRF, FTIR, SEM, MIP, TG, UV/VIS spectroscopy, in addition to density, water absorption and initial setting times. The results indicated an increase in the compressive strength value with the incorporation of nano-silica in geopolymer mixes until the optimum percentage of 5%, while the 10% addition of nano-silica decreased the compressive strength by 5% as compared to the control geopolymer. The increase in the compressive strength was accredited to the increase in the content of N-A-S-H gel and the amorphous structure as shown by XRD and FTIR analysis. In addition, the optical transmittance analysis, MIP and SEM scans along with the results of density and water absorption have clearly shown the densification of the matrix formed for the optimal percentage of nano-silica. However, the initial setting time was found to reduce substantially with increase of nano-silica content. Moreover, the TG results have shown the 5% nano-added geopolymers to have greater thermal stability as compared to reference geopolymer</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">s</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">. Finally, the adopted methodology in this research has shown that 5% nano-silica, is the optimal result for the synthesis and the production of local meta kaolin based geopolymer, with regard to the improvement of physical properties, micro structure and compressive strength.</span></span></span>