We present a regularity condition of a suitable weak solution to the MHD equations in three dimensional space with slip boundary conditions for a velocity and magnetic vector fields. More precisely, we prove a suitabl...We present a regularity condition of a suitable weak solution to the MHD equations in three dimensional space with slip boundary conditions for a velocity and magnetic vector fields. More precisely, we prove a suitable weak solution are HSlder continuous near boundary provided that the scaled mixed Lx,t^p,q-norm of the velocity vector field with 3/p + 2/q 〈 2, 2 〈 q 〈 ∞ is sufficiently small near the boundary. Also, we will investigate that for this 3 2〈3 solution U ∈ Lx,t^p,q with 1 〈 3+p +2/q+≤3/2, 3 〈 p 〈 ∞, the Hausdorff dimension of its singular set is no greater than max{p, q}(3/q+2/q- 1).展开更多
基金partly supported by BK21 PLUS SNU Mathematical Sciences Division and Basic Science Research Program through the National Research Foundation of Korea(NRF)(NRF-2016R1D1A1B03930422)
文摘We present a regularity condition of a suitable weak solution to the MHD equations in three dimensional space with slip boundary conditions for a velocity and magnetic vector fields. More precisely, we prove a suitable weak solution are HSlder continuous near boundary provided that the scaled mixed Lx,t^p,q-norm of the velocity vector field with 3/p + 2/q 〈 2, 2 〈 q 〈 ∞ is sufficiently small near the boundary. Also, we will investigate that for this 3 2〈3 solution U ∈ Lx,t^p,q with 1 〈 3+p +2/q+≤3/2, 3 〈 p 〈 ∞, the Hausdorff dimension of its singular set is no greater than max{p, q}(3/q+2/q- 1).