A precise prediction of maximum scour depth around bridge foundations under ice covered condition is crucial for their safe design because underestimation may result in bridge failure and over-estimation will lead to ...A precise prediction of maximum scour depth around bridge foundations under ice covered condition is crucial for their safe design because underestimation may result in bridge failure and over-estimation will lead to unnecessary construction costs. Compared to pier scour depth predictions within an open channel, few studies have attempted to predict the extent of pier scour depth under ice-covered condition. The present work examines scour under ice by using a series of clear-water flume experiments employing two adjacent circular bridge piers in a uniform bed were exposed to open channel and both rough and smooth ice covered channels. The measured scour depths were compared to three commonly used bridge scour equations including Gao’s simplified equation, the HEC-18/Jones equation, and the Froehlich Design Equation. The present study has several advantages as it adds to the understanding of the physics of bridge pier scour under ice cover flow condition, it checks the validity and reliability of commonly used bridge pier equations, and it reveals whether they are valid for the case of scour under ice-covered flow conditions. In addition, it explains how accurately an equation developed for scour under open channel flow can predict scour around bridge piers under ice-covered flow condition.展开更多
As a new type of submarine pipeline, the piggyback pipeline has been gradually adopted in engineering practice to enhance the performance and safety of submarine pipelines. However, limited simulation work and few exp...As a new type of submarine pipeline, the piggyback pipeline has been gradually adopted in engineering practice to enhance the performance and safety of submarine pipelines. However, limited simulation work and few experimental studies have been published on the scour around the piggyback pipeline under steady current. This study numerically and experimentally investigates the local scour of the piggyback pipe under steady current. The influence of prominent factors such as pipe diameter, inflow Reynolds number, and gap between the main and small pipes, on the maximum scour depth have been examined and discussed in detail. Furthermore, one formula to predict the maximum scour depth under the piggyback pipeline has been derived based on the theoretical analysis of scour equilibrium. The feasibility of the proposed formula has been effectively calibrated by both experimental data and numerical results. The findings drawn from this study are instructive in the future design and application of the piggyback pipeline.展开更多
文摘A precise prediction of maximum scour depth around bridge foundations under ice covered condition is crucial for their safe design because underestimation may result in bridge failure and over-estimation will lead to unnecessary construction costs. Compared to pier scour depth predictions within an open channel, few studies have attempted to predict the extent of pier scour depth under ice-covered condition. The present work examines scour under ice by using a series of clear-water flume experiments employing two adjacent circular bridge piers in a uniform bed were exposed to open channel and both rough and smooth ice covered channels. The measured scour depths were compared to three commonly used bridge scour equations including Gao’s simplified equation, the HEC-18/Jones equation, and the Froehlich Design Equation. The present study has several advantages as it adds to the understanding of the physics of bridge pier scour under ice cover flow condition, it checks the validity and reliability of commonly used bridge pier equations, and it reveals whether they are valid for the case of scour under ice-covered flow conditions. In addition, it explains how accurately an equation developed for scour under open channel flow can predict scour around bridge piers under ice-covered flow condition.
基金financially supported by the National Key Research and Development Program of China (No.2017YFC1404700)the National Natural Science Foundation of China (Nos.51279189,51239001 and 51509023)the China Scholarship Council
文摘As a new type of submarine pipeline, the piggyback pipeline has been gradually adopted in engineering practice to enhance the performance and safety of submarine pipelines. However, limited simulation work and few experimental studies have been published on the scour around the piggyback pipeline under steady current. This study numerically and experimentally investigates the local scour of the piggyback pipe under steady current. The influence of prominent factors such as pipe diameter, inflow Reynolds number, and gap between the main and small pipes, on the maximum scour depth have been examined and discussed in detail. Furthermore, one formula to predict the maximum scour depth under the piggyback pipeline has been derived based on the theoretical analysis of scour equilibrium. The feasibility of the proposed formula has been effectively calibrated by both experimental data and numerical results. The findings drawn from this study are instructive in the future design and application of the piggyback pipeline.