The Loess Plateau is an earthquake prone region of China, where the effects of loess deposit on ground motion were discovered during the 2008 Wenchuan earthquake(Ms8.0) and the 2013 Minxian-Zhangxian earthquake(Ms6.6)...The Loess Plateau is an earthquake prone region of China, where the effects of loess deposit on ground motion were discovered during the 2008 Wenchuan earthquake(Ms8.0) and the 2013 Minxian-Zhangxian earthquake(Ms6.6). The field investigations, observations, and analyses indicated that large number of casualties and tremendous economic losses were caused not only by collapse and damage of houses with poor seismic performance, landslides, but also amplification effects of site conditions, topography and thickness of loess deposit, on ground motion. In this paper, we chose Dazhai Village and Majiagou Village as the typical loess site affected by the two earthquakes for intensity evaluation, borehole exploration, temporary strong motion array, micro tremor survey, and numerical analysis. The aim is to explore the relations between amplification factors and site conditions in terms of topography and thickness of loess deposit. We also developed site amplification factors of ground motion for engineering design consideration at loess sites. The results showed that the amplification effects are more predominant with increase in thickness of loess deposit and slope height. The amplification mayincrease seismic intensity by 1 degree, PGA and predominant period by 2 times, respectively.展开更多
The objective of Performance-Based Earthquake Engineering (PBEE) is the analysis of performance objectives with a specified annual probability of exceedance. Increasingly undesirable performance is caused by increas...The objective of Performance-Based Earthquake Engineering (PBEE) is the analysis of performance objectives with a specified annual probability of exceedance. Increasingly undesirable performance is caused by increasing levels of strong ground motion having decreasing annual probabilities of exceedance. The development of this methodology includes three steps: (1) evaluation of the distribution of ground motion at a site; (2) evaluation of the distribution of system response; (3) evaluation of the probability of exceeding decision variables within a given time period, given appropriate damage measures. The work has taken a systematic approach to determine the impact of increasing levels of detail in site characterization on the accuracy of ground motion and site effects predictions. Complementary studies have investigated the use of the following models for evaluating site effects: (1) amplification factors defined on the basis of generalized site categories, (2) one-dimensional ground response analysis, and (3) two-dimensional ground response analysis for surface topography on ground motion. The paper provides a brief synthesis of ground motion and site effects analysis procedures within a Performance-Based Design framework. It focuses about the influence on the evaluation of site effects in some active regions by different shear waves velocity measurements Down Hole (D-H), Cross Hole (C-H), Seismic Dilatometer Marchetti Test (SDMT) and by different variation of shear modulus and damping ratio with strain level and depth from different laboratory dynamic tests for soil characterization: Resonant Column Test (RCT), Cyclic Loading Torsional Shear Test (CLTST).展开更多
This paper aimed to examine the site dependence and evaluate the methods for site analysis of far-source ground motions. This was achieved through the examination of frequency content estimated by different methods ba...This paper aimed to examine the site dependence and evaluate the methods for site analysis of far-source ground motions. This was achieved through the examination of frequency content estimated by different methods based on strong ground motions recorded at twelve far-source stations in Shandong province during the Wenchuan earthquake. The stations were located in sites with soil profiles ranging from code classes Ⅰ to Ⅲ. Approaches used included the Fourier amplitude spectrum (FAS), the earthquake response spectrum (ERS), the spectral ratio between the horizontal and the vertical components (H/V), the spectral ratio between the spectra at the site and at a reference site (SRRS), and coda wave analysis (CWA). Results showed that major periods of these ground motions obtained by FAS, ERS and H/V ratio methods were all evidently larger than site dominant periods; the periods were also different from each other and mainly reflected the frequency content of long period components. Prominent periods obtained by the SRRS approach neither illuminated the long period aspect nor efficiently determined site features of the motions. The CWA resulted in a period close to site period for stations with good quality recordings. The results obtained in this study will be useful for the evaluation of far-source effect in constructing seismic design spectra and in selecting methods for ground motion site analysis.展开更多
A linear response history analysis method is used to determine the influence of three factors:geometric incoherency,wave-passage,and local site characteristics on the response of lnulti-support structures subjected to...A linear response history analysis method is used to determine the influence of three factors:geometric incoherency,wave-passage,and local site characteristics on the response of lnulti-support structures subjected to differential ground motions.A one-span frame and a reduced model of a 24-span bridge,located in Las Vegas,Nevada are studied,in which the influence of each of the three factors and their combinations are analyzed.It is revealed that the incoherency of earthquake ground motion can have a dramatic influence on structural response by modifying the dynamics response to uniform excitation and inducing pseudo-static response,which does not exist in structures subjected to uniform excitation.The total response when all three sources of ground motion incoherency are included is generally larger than that of uniform excitation.展开更多
A new model to simulate spatially correlated earthquake ground motions is developed. In the model, the main factors that characterize three distinct effects of spatial variability, namely, the incoherency effect, the ...A new model to simulate spatially correlated earthquake ground motions is developed. In the model, the main factors that characterize three distinct effects of spatial variability, namely, the incoherency effect, the wave-passage effect and the site-response effect, are taken into account, and corresponding terms/parameters are incorporated into the well known model of uniform ground motions. Some of these terms/parameters can be determined by the root operation, and others can be calculated directly. The proposed model is first verified theoretically, and examples of ground motion simulations are provided as a further illustration. It is proven that the ensemble expected value and the ensemble auto-/cross-spectral density functions of the simulated ground motions are identical to the target spectral density functions. The proposed model can also be used to simulate other correlated stochastic processes, such as wave and wind loads.展开更多
In this article,we review our previous research for spatial and temporal characterizations of the San Andreas Fault(SAF)at Parkfield,using the fault-zone trapped wave(FZTW)since the middle 1980s.Parkfield,California h...In this article,we review our previous research for spatial and temporal characterizations of the San Andreas Fault(SAF)at Parkfield,using the fault-zone trapped wave(FZTW)since the middle 1980s.Parkfield,California has been taken as a scientific seismic experimental site in the USA since the 1970s,and the SAF is the target fault to investigate earthquake physics and forecasting.More than ten types of field experiments(including seismic,geophysical,geochemical,geodetic and so on)have been carried out at this experimental site since then.In the fall of 2003,a pair of scientific wells were drilled at the San Andreas Fault Observatory at Depth(SAFOD)site;the main-hole(MH)passed a~200-m-wide low-velocity zone(LVZ)with highly fractured rocks of the SAF at a depth of~3.2 km below the wellhead on the ground level(Hickman et al.,2005;Zoback,2007;Lockner et al.,2011).Borehole seismographs were installed in the SAFOD MH in 2004,which were located within the LVZ of the fault at~3-km depth to probe the internal structure and physical properties of the SAF.On September 282004,a M6 earthquake occurred~15 km southeast of the town of Parkfield.The data recorded in the field experiments before and after the 2004 M6 earthquake provided a unique opportunity to monitor the co-mainshock damage and post-seismic heal of the SAF associated with this strong earthquake.This retrospective review of the results from a sequence of our previous experiments at the Parkfield SAF,California,will be valuable for other researchers who are carrying out seismic experiments at the active faults to develop the community seismic wave velocity models,the fault models and the earthquake forecasting models in global seismogenic regions.展开更多
A campaign of microtremor measurements was conducted in summer 2007 for assessing local site effects of seismic strong ground motion in metropolitan Beijing. Using the measurements from over 600 sites with approximate...A campaign of microtremor measurements was conducted in summer 2007 for assessing local site effects of seismic strong ground motion in metropolitan Beijing. Using the measurements from over 600 sites with approximately 1―2 km spacing covering the entire area inside Beijing’s 5th Beltway, we present the analysis results in the form of contours of the predominant resonant frequency, the thick- ness of the uppermost soft sediments, and the ground motion amplification factor. The microtremor- derived soft sediment thickness is generally in agreement with previous results based on much sparser borehole data, with the revealing of more short-wavelength undulations, which coincide with major geomorphological and neotectonic expressions in metropolitan Beijing. This study provides additional valuable information to the earthquake-resistant design of civil infrastructures and seismic hazard response in metropolitan Beijing. It also provides a feasible geophysical approaching to explore the 3-D structure beneath metropolitan cities.展开更多
Collapses of transmission towers were often observed in previous large earthquakes such as the Chi-Chi earthquake in Taiwan and Wenchuan earthquake in Sichuan,China. These collapses were partially caused by the pullin...Collapses of transmission towers were often observed in previous large earthquakes such as the Chi-Chi earthquake in Taiwan and Wenchuan earthquake in Sichuan,China. These collapses were partially caused by the pulling forces from the transmission lines generated from out-of-phase responses of the adjacent towers owing to spatially varying earthquake ground motions. In this paper,a 3D finite element model of the transmission tower-line system is established considering the geometric nonlinearity of transmission lines. The nonlinear responses of the structural system at a canyon site are analyzed subjected to spatially varying ground motions. The spatial variations of ground motion associated with the wave passage,coherency loss,and local site effects are given. The spatially varying ground motions are simulated stochastically based on an empirical coherency loss function and a filtered Tajimi-Kanai power spectral density function. The site effect is considered by a transfer function derived from 1D wave propagation theory. Compared with structural responses calculated using the uniform ground motion and delayed excitations,numerical results indicate that seismic responses of transmission towers and power lines are amplified when considering spatially varying ground motions including site effects. Each factor of ground motion spatial variations has a significant effect on the seismic response of the structure,especially for the local site effect. Therefore,neglecting the earthquake ground motion spatial variations may lead to a substantial underestimation of the response of transmission tower-line system during strong earthquakes. Each effect of ground motion spatial variations should be incorporated in seismic analysis of the structural system.展开更多
基金financially supported by National Natural Science Foundation of China (No.51478444 & No.41472297)
文摘The Loess Plateau is an earthquake prone region of China, where the effects of loess deposit on ground motion were discovered during the 2008 Wenchuan earthquake(Ms8.0) and the 2013 Minxian-Zhangxian earthquake(Ms6.6). The field investigations, observations, and analyses indicated that large number of casualties and tremendous economic losses were caused not only by collapse and damage of houses with poor seismic performance, landslides, but also amplification effects of site conditions, topography and thickness of loess deposit, on ground motion. In this paper, we chose Dazhai Village and Majiagou Village as the typical loess site affected by the two earthquakes for intensity evaluation, borehole exploration, temporary strong motion array, micro tremor survey, and numerical analysis. The aim is to explore the relations between amplification factors and site conditions in terms of topography and thickness of loess deposit. We also developed site amplification factors of ground motion for engineering design consideration at loess sites. The results showed that the amplification effects are more predominant with increase in thickness of loess deposit and slope height. The amplification mayincrease seismic intensity by 1 degree, PGA and predominant period by 2 times, respectively.
文摘The objective of Performance-Based Earthquake Engineering (PBEE) is the analysis of performance objectives with a specified annual probability of exceedance. Increasingly undesirable performance is caused by increasing levels of strong ground motion having decreasing annual probabilities of exceedance. The development of this methodology includes three steps: (1) evaluation of the distribution of ground motion at a site; (2) evaluation of the distribution of system response; (3) evaluation of the probability of exceeding decision variables within a given time period, given appropriate damage measures. The work has taken a systematic approach to determine the impact of increasing levels of detail in site characterization on the accuracy of ground motion and site effects predictions. Complementary studies have investigated the use of the following models for evaluating site effects: (1) amplification factors defined on the basis of generalized site categories, (2) one-dimensional ground response analysis, and (3) two-dimensional ground response analysis for surface topography on ground motion. The paper provides a brief synthesis of ground motion and site effects analysis procedures within a Performance-Based Design framework. It focuses about the influence on the evaluation of site effects in some active regions by different shear waves velocity measurements Down Hole (D-H), Cross Hole (C-H), Seismic Dilatometer Marchetti Test (SDMT) and by different variation of shear modulus and damping ratio with strain level and depth from different laboratory dynamic tests for soil characterization: Resonant Column Test (RCT), Cyclic Loading Torsional Shear Test (CLTST).
基金funded by National Natural Science Foundation of China (50808168)Ministry of Science and Technology of Weihai (2008087)Foundation of Harbin Institute of Technology at Weihai (HIT(Y)200801)
文摘This paper aimed to examine the site dependence and evaluate the methods for site analysis of far-source ground motions. This was achieved through the examination of frequency content estimated by different methods based on strong ground motions recorded at twelve far-source stations in Shandong province during the Wenchuan earthquake. The stations were located in sites with soil profiles ranging from code classes Ⅰ to Ⅲ. Approaches used included the Fourier amplitude spectrum (FAS), the earthquake response spectrum (ERS), the spectral ratio between the horizontal and the vertical components (H/V), the spectral ratio between the spectra at the site and at a reference site (SRRS), and coda wave analysis (CWA). Results showed that major periods of these ground motions obtained by FAS, ERS and H/V ratio methods were all evidently larger than site dominant periods; the periods were also different from each other and mainly reflected the frequency content of long period components. Prominent periods obtained by the SRRS approach neither illuminated the long period aspect nor efficiently determined site features of the motions. The CWA resulted in a period close to site period for stations with good quality recordings. The results obtained in this study will be useful for the evaluation of far-source effect in constructing seismic design spectra and in selecting methods for ground motion site analysis.
基金the China Scholarship Council and the Teaching and Research Award Program for Outstanding Young Teachers (TRAPOYT) in Higher Education Institutions of MOE,PRC.
文摘A linear response history analysis method is used to determine the influence of three factors:geometric incoherency,wave-passage,and local site characteristics on the response of lnulti-support structures subjected to differential ground motions.A one-span frame and a reduced model of a 24-span bridge,located in Las Vegas,Nevada are studied,in which the influence of each of the three factors and their combinations are analyzed.It is revealed that the incoherency of earthquake ground motion can have a dramatic influence on structural response by modifying the dynamics response to uniform excitation and inducing pseudo-static response,which does not exist in structures subjected to uniform excitation.The total response when all three sources of ground motion incoherency are included is generally larger than that of uniform excitation.
基金National Natural Science Foundation of China Under Grant No.90815020 and No.50639010
文摘A new model to simulate spatially correlated earthquake ground motions is developed. In the model, the main factors that characterize three distinct effects of spatial variability, namely, the incoherency effect, the wave-passage effect and the site-response effect, are taken into account, and corresponding terms/parameters are incorporated into the well known model of uniform ground motions. Some of these terms/parameters can be determined by the root operation, and others can be calculated directly. The proposed model is first verified theoretically, and examples of ground motion simulations are provided as a further illustration. It is proven that the ensemble expected value and the ensemble auto-/cross-spectral density functions of the simulated ground motions are identical to the target spectral density functions. The proposed model can also be used to simulate other correlated stochastic processes, such as wave and wind loads.
文摘In this article,we review our previous research for spatial and temporal characterizations of the San Andreas Fault(SAF)at Parkfield,using the fault-zone trapped wave(FZTW)since the middle 1980s.Parkfield,California has been taken as a scientific seismic experimental site in the USA since the 1970s,and the SAF is the target fault to investigate earthquake physics and forecasting.More than ten types of field experiments(including seismic,geophysical,geochemical,geodetic and so on)have been carried out at this experimental site since then.In the fall of 2003,a pair of scientific wells were drilled at the San Andreas Fault Observatory at Depth(SAFOD)site;the main-hole(MH)passed a~200-m-wide low-velocity zone(LVZ)with highly fractured rocks of the SAF at a depth of~3.2 km below the wellhead on the ground level(Hickman et al.,2005;Zoback,2007;Lockner et al.,2011).Borehole seismographs were installed in the SAFOD MH in 2004,which were located within the LVZ of the fault at~3-km depth to probe the internal structure and physical properties of the SAF.On September 282004,a M6 earthquake occurred~15 km southeast of the town of Parkfield.The data recorded in the field experiments before and after the 2004 M6 earthquake provided a unique opportunity to monitor the co-mainshock damage and post-seismic heal of the SAF associated with this strong earthquake.This retrospective review of the results from a sequence of our previous experiments at the Parkfield SAF,California,will be valuable for other researchers who are carrying out seismic experiments at the active faults to develop the community seismic wave velocity models,the fault models and the earthquake forecasting models in global seismogenic regions.
基金Supported by the Ministry of Science and Technology of China (Grant No. 2006DFA21650)Special Scientific Research Projects on Earthquake (Grant No. 0207690229 and 200708008)
文摘A campaign of microtremor measurements was conducted in summer 2007 for assessing local site effects of seismic strong ground motion in metropolitan Beijing. Using the measurements from over 600 sites with approximately 1―2 km spacing covering the entire area inside Beijing’s 5th Beltway, we present the analysis results in the form of contours of the predominant resonant frequency, the thick- ness of the uppermost soft sediments, and the ground motion amplification factor. The microtremor- derived soft sediment thickness is generally in agreement with previous results based on much sparser borehole data, with the revealing of more short-wavelength undulations, which coincide with major geomorphological and neotectonic expressions in metropolitan Beijing. This study provides additional valuable information to the earthquake-resistant design of civil infrastructures and seismic hazard response in metropolitan Beijing. It also provides a feasible geophysical approaching to explore the 3-D structure beneath metropolitan cities.
基金Project supported by the National Natural Science Foundation of China (No. 50638010)the Specialized Research Fund for the Doctoral Program of Higher Education of China (No. 20070141036)
文摘Collapses of transmission towers were often observed in previous large earthquakes such as the Chi-Chi earthquake in Taiwan and Wenchuan earthquake in Sichuan,China. These collapses were partially caused by the pulling forces from the transmission lines generated from out-of-phase responses of the adjacent towers owing to spatially varying earthquake ground motions. In this paper,a 3D finite element model of the transmission tower-line system is established considering the geometric nonlinearity of transmission lines. The nonlinear responses of the structural system at a canyon site are analyzed subjected to spatially varying ground motions. The spatial variations of ground motion associated with the wave passage,coherency loss,and local site effects are given. The spatially varying ground motions are simulated stochastically based on an empirical coherency loss function and a filtered Tajimi-Kanai power spectral density function. The site effect is considered by a transfer function derived from 1D wave propagation theory. Compared with structural responses calculated using the uniform ground motion and delayed excitations,numerical results indicate that seismic responses of transmission towers and power lines are amplified when considering spatially varying ground motions including site effects. Each factor of ground motion spatial variations has a significant effect on the seismic response of the structure,especially for the local site effect. Therefore,neglecting the earthquake ground motion spatial variations may lead to a substantial underestimation of the response of transmission tower-line system during strong earthquakes. Each effect of ground motion spatial variations should be incorporated in seismic analysis of the structural system.