传统流形学习算法虽然是一种常用的有效降维方法,但由于其自身计算结构的限制,往往存在数据分析不足和计算时间较长等问题.为此提出一种基于谱聚类的流形学习算法(spectralclustering locally linear embedding,SCLLE),并对其机理以及...传统流形学习算法虽然是一种常用的有效降维方法,但由于其自身计算结构的限制,往往存在数据分析不足和计算时间较长等问题.为此提出一种基于谱聚类的流形学习算法(spectralclustering locally linear embedding,SCLLE),并对其机理以及优点给予了实例证明.在UCI和NCBI数据集上的实验结果表明,该算法具有较好的识别效果和计算性能.展开更多
为了更好地理解图像序列的隐藏深度信息,需要分析数据的隐藏结构。目前,多采用谱流形学习算法学习高维采样数据的低维嵌入坐标,从而获取数据的隐藏结构。谱流形学习算法一般是基于所研究的高维数据分布在单个流形上的前提假设,并不支持...为了更好地理解图像序列的隐藏深度信息,需要分析数据的隐藏结构。目前,多采用谱流形学习算法学习高维采样数据的低维嵌入坐标,从而获取数据的隐藏结构。谱流形学习算法一般是基于所研究的高维数据分布在单个流形上的前提假设,并不支持图像序列中存在的多流形结构。结合图像序列的结构特点,提出了一种针对图像序列的谱深度学习算法(spectral deep learning,SDL)。通过建立混合多流形模型,保持流形局部变化的平滑和连续,利用流形对齐建立层次流形的映射关系,得到图像序列的深度低维嵌入坐标。最后通过实验证明了算法在混合多流形数据集和图像序列数据集上的有效性。展开更多
文摘传统流形学习算法虽然是一种常用的有效降维方法,但由于其自身计算结构的限制,往往存在数据分析不足和计算时间较长等问题.为此提出一种基于谱聚类的流形学习算法(spectralclustering locally linear embedding,SCLLE),并对其机理以及优点给予了实例证明.在UCI和NCBI数据集上的实验结果表明,该算法具有较好的识别效果和计算性能.
文摘为了更好地理解图像序列的隐藏深度信息,需要分析数据的隐藏结构。目前,多采用谱流形学习算法学习高维采样数据的低维嵌入坐标,从而获取数据的隐藏结构。谱流形学习算法一般是基于所研究的高维数据分布在单个流形上的前提假设,并不支持图像序列中存在的多流形结构。结合图像序列的结构特点,提出了一种针对图像序列的谱深度学习算法(spectral deep learning,SDL)。通过建立混合多流形模型,保持流形局部变化的平滑和连续,利用流形对齐建立层次流形的映射关系,得到图像序列的深度低维嵌入坐标。最后通过实验证明了算法在混合多流形数据集和图像序列数据集上的有效性。