In soft sensor field, just-in-time learning(JITL) is an effective approach to model nonlinear and time varying processes. However, most similarity criterions in JITL are computed in the input space only while ignoring...In soft sensor field, just-in-time learning(JITL) is an effective approach to model nonlinear and time varying processes. However, most similarity criterions in JITL are computed in the input space only while ignoring important output information, which may lead to inaccurate construction of relevant sample set. To solve this problem, we propose a novel supervised feature extraction method suitable for the regression problem called supervised local and non-local structure preserving projections(SLNSPP), in which both input and output information can be easily and effectively incorporated through a newly defined similarity index. The SLNSPP can not only retain the virtue of locality preserving projections but also prevent faraway points from nearing after projection,which endues SLNSPP with powerful discriminating ability. Such two good properties of SLNSPP are desirable for JITL as they are expected to enhance the accuracy of similar sample selection. Consequently, we present a SLNSPP-JITL framework for developing adaptive soft sensor, including a sparse learning strategy to limit the scale and update the frequency of database. Finally, two case studies are conducted with benchmark datasets to evaluate the performance of the proposed schemes. The results demonstrate the effectiveness of LNSPP and SLNSPP.展开更多
The problem of art forgery and infringement is becoming increasingly prominent,since diverse self-media contents with all kinds of art pieces are released on the Internet every day.For art paintings,object detection a...The problem of art forgery and infringement is becoming increasingly prominent,since diverse self-media contents with all kinds of art pieces are released on the Internet every day.For art paintings,object detection and localization provide an efficient and ef-fective means of art authentication and copyright protection.However,the acquisition of a precise detector requires large amounts of ex-pensive pixel-level annotations.To alleviate this,we propose a novel weakly supervised object localization(WSOL)with background su-perposition erasing(BSE),which recognizes objects with inexpensive image-level labels.First,integrated adversarial erasing(IAE)for vanilla convolutional neural network(CNN)dropouts the most discriminative region by leveraging high-level semantic information.Second,a background suppression module(BSM)limits the activation area of the IAE to the object region through a self-guidance mechanism.Finally,in the inference phase,we utilize the refined importance map(RIM)of middle features to obtain class-agnostic loc-alization results.Extensive experiments are conducted on paintings,CUB-200-2011 and ILSVRC to validate the effectiveness of our BSE.展开更多
Weakly supervised object localization mines the pixel-level location information based on image-level annotations.The traditional weakly supervised object localization approaches exploit the last convolutional feature...Weakly supervised object localization mines the pixel-level location information based on image-level annotations.The traditional weakly supervised object localization approaches exploit the last convolutional feature map to locate the discriminative regions with abundant semantics.Although it shows the localization ability of classification network,the process lacks the use of shallow edge and texture features,which cannot meet the requirement of object integrity in the localization task.Thus,we propose a novel shallow feature-driven dual-edges localization(DEL)network,in which dual kinds of shallow edges are utilized to mine entire target object regions.Specifically,we design an edge feature mining(EFM)module to extract the shallow edge details through the similarity measurement between the original class activation map and shallow features.We exploit the EFM module to extract two kinds of edges,named the edge of the shallow feature map and the edge of shallow gradients,for enhancing the edge details of the target object in the last convolutional feature map.The total process is proposed during the inference stage,which does not bring extra training costs.Extensive experiments on both the ILSVRC and CUB-200-2011 datasets show that the DEL method obtains consistency and substantial performance improvements compared with the existing methods.展开更多
Locally linear embedding(LLE)algorithm has a distinct deficiency in practical application.It requires users to select the neighborhood parameter,k,which denotes the number of nearest neighbors.A new adaptive method is...Locally linear embedding(LLE)algorithm has a distinct deficiency in practical application.It requires users to select the neighborhood parameter,k,which denotes the number of nearest neighbors.A new adaptive method is presented based on supervised LLE in this article.A similarity measure is formed by utilizing the Fisher projection distance,and then it is used as a threshold to select k.Different samples will produce different k adaptively according to the density of the data distribution.The method is applied to classify plant leaves.The experimental results show that the average classification rate of this new method is up to 92.4%,which is much better than the results from the traditional LLE and supervised LLE.展开更多
基金Supported by the National Natural Science Foundation of China(61273160)the Fundamental Research Funds for the Central Universities(14CX06067A,13CX05021A)
文摘In soft sensor field, just-in-time learning(JITL) is an effective approach to model nonlinear and time varying processes. However, most similarity criterions in JITL are computed in the input space only while ignoring important output information, which may lead to inaccurate construction of relevant sample set. To solve this problem, we propose a novel supervised feature extraction method suitable for the regression problem called supervised local and non-local structure preserving projections(SLNSPP), in which both input and output information can be easily and effectively incorporated through a newly defined similarity index. The SLNSPP can not only retain the virtue of locality preserving projections but also prevent faraway points from nearing after projection,which endues SLNSPP with powerful discriminating ability. Such two good properties of SLNSPP are desirable for JITL as they are expected to enhance the accuracy of similar sample selection. Consequently, we present a SLNSPP-JITL framework for developing adaptive soft sensor, including a sparse learning strategy to limit the scale and update the frequency of database. Finally, two case studies are conducted with benchmark datasets to evaluate the performance of the proposed schemes. The results demonstrate the effectiveness of LNSPP and SLNSPP.
基金This work was supported in part by Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application,China(No.2022B1212010011).
文摘The problem of art forgery and infringement is becoming increasingly prominent,since diverse self-media contents with all kinds of art pieces are released on the Internet every day.For art paintings,object detection and localization provide an efficient and ef-fective means of art authentication and copyright protection.However,the acquisition of a precise detector requires large amounts of ex-pensive pixel-level annotations.To alleviate this,we propose a novel weakly supervised object localization(WSOL)with background su-perposition erasing(BSE),which recognizes objects with inexpensive image-level labels.First,integrated adversarial erasing(IAE)for vanilla convolutional neural network(CNN)dropouts the most discriminative region by leveraging high-level semantic information.Second,a background suppression module(BSM)limits the activation area of the IAE to the object region through a self-guidance mechanism.Finally,in the inference phase,we utilize the refined importance map(RIM)of middle features to obtain class-agnostic loc-alization results.Extensive experiments are conducted on paintings,CUB-200-2011 and ILSVRC to validate the effectiveness of our BSE.
基金This work was partly supported by National Natural Science Foundation of China(No.62072394)Natural Science Foundation of Hebei Province,China(No.F2021203019)Hebei Key Laboratory Project,China(No.202250701010046).
文摘Weakly supervised object localization mines the pixel-level location information based on image-level annotations.The traditional weakly supervised object localization approaches exploit the last convolutional feature map to locate the discriminative regions with abundant semantics.Although it shows the localization ability of classification network,the process lacks the use of shallow edge and texture features,which cannot meet the requirement of object integrity in the localization task.Thus,we propose a novel shallow feature-driven dual-edges localization(DEL)network,in which dual kinds of shallow edges are utilized to mine entire target object regions.Specifically,we design an edge feature mining(EFM)module to extract the shallow edge details through the similarity measurement between the original class activation map and shallow features.We exploit the EFM module to extract two kinds of edges,named the edge of the shallow feature map and the edge of shallow gradients,for enhancing the edge details of the target object in the last convolutional feature map.The total process is proposed during the inference stage,which does not bring extra training costs.Extensive experiments on both the ILSVRC and CUB-200-2011 datasets show that the DEL method obtains consistency and substantial performance improvements compared with the existing methods.
基金This study was financially supported by the National Natural Science Foundation of China(61172127)the Research Fund for the Doctoral Program of Higher Education(KJQN1114)+2 种基金Anhui Provincial Natural Science Foundation(1308085QC58)the 211 Project Youth Scientific Research Fund of Anhui UniversityProvincial Natural Science Foundation of Anhui Universities(KJ2013A026)。
文摘Locally linear embedding(LLE)algorithm has a distinct deficiency in practical application.It requires users to select the neighborhood parameter,k,which denotes the number of nearest neighbors.A new adaptive method is presented based on supervised LLE in this article.A similarity measure is formed by utilizing the Fisher projection distance,and then it is used as a threshold to select k.Different samples will produce different k adaptively according to the density of the data distribution.The method is applied to classify plant leaves.The experimental results show that the average classification rate of this new method is up to 92.4%,which is much better than the results from the traditional LLE and supervised LLE.