期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Fast magnitude determination using a single seismological station record implementing machine learning techniques 被引量:4
1
作者 Luis H.Ochoa Luis F.Nino Carlos A.Vargas 《Geodesy and Geodynamics》 2018年第1期34-41,共8页
In this work a Support Vector Machine Regression(SVMR) algorithm is used to calculate local magnitude(MI) using only five seconds of signal after the P wave onset of one three component seismic station. This algor... In this work a Support Vector Machine Regression(SVMR) algorithm is used to calculate local magnitude(MI) using only five seconds of signal after the P wave onset of one three component seismic station. This algorithm was trained with 863 records of historical earthquakes, where the input regression parameters were an exponential function of the waveform envelope estimated by least squares and the maximum value of the observed waveform for each component in a single station. Ten-fold cross validation was applied for a normalized polynomial kernel obtaining the mean absolute error for different exponents and complexity parameters. The local magnitude(MI) could be estimated with 0.19 units of mean absolute error. The proposed algorithm is easy to implement in hardware and may be used directly after the field seismological sensor to generate fast decisions at seismological control centers, increasing the possibility of having an effective reaction. 展开更多
关键词 Earthquake early warning support vector machine Regression Earthquake Rapid response local magnitude Seismic event Seismology Bogota Colombia
下载PDF
Fingerprint Liveness Detection Based on Multi-Scale LPQ and PCA 被引量:13
2
作者 Chengsheng Yuan Xingming Sun Rui Lv 《China Communications》 SCIE CSCD 2016年第7期60-65,共6页
Fingerprint authentication system is used to verify users' identification according to the characteristics of their fingerprints.However,this system has some security and privacy problems.For example,some artifici... Fingerprint authentication system is used to verify users' identification according to the characteristics of their fingerprints.However,this system has some security and privacy problems.For example,some artificial fingerprints can trick the fingerprint authentication system and access information using real users' identification.Therefore,a fingerprint liveness detection algorithm needs to be designed to prevent illegal users from accessing privacy information.In this paper,a new software-based liveness detection approach using multi-scale local phase quantity(LPQ) and principal component analysis(PCA) is proposed.The feature vectors of a fingerprint are constructed through multi-scale LPQ.PCA technology is also introduced to reduce the dimensionality of the feature vectors and gain more effective features.Finally,a training model is gained using support vector machine classifier,and the liveness of a fingerprint is detected on the basis of the training model.Experimental results demonstrate that our proposed method can detect the liveness of users' fingerprints and achieve high recognition accuracy.This study also confirms that multi-resolution analysis is a useful method for texture feature extraction during fingerprint liveness detection. 展开更多
关键词 fingerprint liveness detection wavelet transform local phase quantity principal component analysis support vector machine
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部