The heat transfer through a concave permeable fin is analyzed by the local thermal non-equilibrium(LTNE)model.The governing dimensional temperature equations for the solid and fluid phases of the porous extended surfa...The heat transfer through a concave permeable fin is analyzed by the local thermal non-equilibrium(LTNE)model.The governing dimensional temperature equations for the solid and fluid phases of the porous extended surface are modeled,and then are nondimensionalized by suitable dimensionless terms.Further,the obtained nondimensional equations are solved by the clique polynomial method(CPM).The effects of several dimensionless parameters on the fin's thermal profiles are shown by graphical illustrations.Additionally,the current study implements deep neural structures to solve physics-governed coupled equations,and the best-suited hyperparameters are attained by comparison with various network combinations.The results of the CPM and physicsinformed neural network(PINN)exhibit good agreement,signifying that both methods effectively solve the thermal modeling problem.展开更多
To investigate the natural convective process in a hydrodynamically and thermally anisotropic porous medium at the representative elementary volume(REV)scale,the present work presented a multiplerelaxation-time lattic...To investigate the natural convective process in a hydrodynamically and thermally anisotropic porous medium at the representative elementary volume(REV)scale,the present work presented a multiplerelaxation-time lattice Boltzmann method(MRT-LBM)based on the assumption of local thermal non-equilibrium conditions(LTNE).Three sets of distribution function were used to solve the coupled momentum and heat transfer equations.One set was used to compute the flow field based on the generalized non-Darcy model;the other two sets were used to solve the temperature fields of fluid and solid under the LTNE.To describe the anisotropy of flow field of the porous media,a permeability tensor and a Forchheimer coefficient tensor were introduced into the model.Additionally,a heat conductivity tensor and a special relaxation matrix with some off-diagonal elements were selected for the thermal anisotropy.Furthermore,by selecting an appropriate equilibrium moments and discrete source terms accounting for the local thermal non-equilibrium effect,as well as choosing an off-diagonal relaxation matrix with some specific elements,the presented model can recover the exact governing equations for natural convection under LTNE with anisotropic permeability and thermal conductivity with no deviation terms through the Chapman-Enskog procedure.Finally,the proposed model was adopted to simulate several benchmark problems.Good agreements with results in the available literatures can be achieved,which indicate the wide practicability and the good accuracy of the present model.展开更多
By means of a stochastic model suggested in this paper for the systems with local non-equilibrium excited thermal fluctuations, the famous Shannon entropy is extended to include the heat conduction processes controlle...By means of a stochastic model suggested in this paper for the systems with local non-equilibrium excited thermal fluctuations, the famous Shannon entropy is extended to include the heat conduction processes controlled externally by boundary constraints of constant temperature gradients at two sides.Meanwhile,using the description of master equation for the continuous Markov processes a balance equation of stochastic entropy production valid for one dimension gaseous heat conduction systems with high values of Prandtl number has been also established.Based on it,a general expression for both the stochastic entropy production and the entropy production of fluctuations have been further deduced by theΩ-expansions.In this formalism,all kinds of stochastic contributions to the dissipation from the non-equilibrium thermal fluctuation and internal noise turn explicit.展开更多
An analysis is performed to study the influence of local thermal nonequilibrium(LTNE)on unsteadyMHDlaminar boundary layer flowof viscous,incompressible fluid over a vertical stretching plate embedded in a sparsely pac...An analysis is performed to study the influence of local thermal nonequilibrium(LTNE)on unsteadyMHDlaminar boundary layer flowof viscous,incompressible fluid over a vertical stretching plate embedded in a sparsely packed porous medium in the presence of heat generation/absorption.The flow in the porous medium is governed by Brinkman-Forchheimer extended Darcy model.A uniform heat source or sink is presented in the solid phase.By applying similarity analysis,the governing partial differential equations are transformed into a set of time dependent non-linear coupled ordinary differential equations and they are solved numerically by Runge-Kutta Fehlberg method along with shooting technique.The obtained results are displayed graphically to illustrate the influence of different physical parameters on the velocity,temperature profile and heat transfer rate for both fluid and solid phases.Moreover,the numerical results obtained in this study are compared with the existing literature in the case of LTE and found that they are in good agreement.展开更多
Steel industry is high energy-consuming industry, and its waste?heat recovery is critically?important for energy utilization. In this study, pipeline bundle is used to enhance heat transfer in?waste?heat recovery devi...Steel industry is high energy-consuming industry, and its waste?heat recovery is critically?important for energy utilization. In this study, pipeline bundle is used to enhance heat transfer in?waste?heat recovery device,?and?associated gas-solid heat transfer and energy utilization performance with different pipeline arrangement, pipe diameter and shape of internal component are further analyzed. The temperatures of gas and particle in device with pipeline bundle periodically fluctuate in horizontal direction, and those in staggered system distribute more uniformly than those in paralleled system. Compared with paralleled device, exergy and waste heat utilization efficiency of staggered device have been improved, and they are both higher than?those without pipeline. As pipe diameter increases, exergy and waste heat utilization efficiency first increases and then decreases, and they reach the maxima with optimal pipe diameter.?As the width of internal component keeps constant, influence of its shape on heat transfer is very little.展开更多
We investigate the subsurface heat exchange process in EGS (enhanced geothermal systems) with a previously developed novel model. This model treats the porous heat reservoir as an equivalent porous medium of a singl...We investigate the subsurface heat exchange process in EGS (enhanced geothermal systems) with a previously developed novel model. This model treats the porous heat reservoir as an equivalent porous medium of a single porosity. However, it considers local thermal non-equilibrium between solid rock matrix and fluid flowing in the factures and employs two energy conservation equations to describe heat transfer in the rock matrix and in the fractures, respectively, enabling the modeling and analyses of convective heat exchange in the heat reservoir. Another salient feature of this model is its capability of simulating the complete subsurface heat exchange process in EGS. The EGS subsurface geometry of interest physically consists of multiple domains: open channels for injection and production wells, the artificial heat reservoir, and the rocks enclosing the heat reservoir, while computationally we treat it as a single-domain of multiple sub-regions associated with different sets of characteristic properties (porosity and permeability, etc.). This circumvents typical difficulties about matching boundary conditions between sub-domains in traditional multi-domain approaches and facilitates numerical implementation and simulation of the complete subsurface heat exchange process. This model is used to perform a comprehensive parametric study with respect to an imaginary doublet EGS. Effects of several parameters, including the permeability of heat reservoir, heat exchange coefficient in the heat reservoir, the specific area of fractures in the heat reservoir, and thermal compensation from surrounding rocks, on the heat extraction efficiency and EGS lifetime are analyzed.展开更多
A gradually-varied porous structure is designed to increase the thermal performance of the porous volumetric solar receiver.Based on the replica method and multilayer recoating technique, the silicon carbide porous ce...A gradually-varied porous structure is designed to increase the thermal performance of the porous volumetric solar receiver.Based on the replica method and multilayer recoating technique, the silicon carbide porous ceramic with linear-changed geometrical parameters is fabricated. The performances of the uniform and gradually-varied porous volumetric solar receivers are studied by both experiment and numerical simulation. An optimization method combining genetic algorithm and computational fluid dynamics analysis is applied to determine the optimum porosity distribution. The results present that porous volumetric solar receiver with linear-changed geometrical parameters exhibits better thermal performance than the uniform porous volumetric solar receivers, especially when the thickness of the receiver is small. Larger porosity in the front is beneficial for increasing the solar radiation penetration depth, which limits the reflectance and thermal radiative losses. Smaller porosity in the rear traps more solar radiation and increases the convective heat transfer. When the receiver’s thickness is larger, the performance of the gradually-varied volumetric solar receiver is nearly identical to that of the uniform receiver with largest porosity. The double-layer configuration is found to be the optimized structure of the gradually-varied porous volumetric solar receiver. The thermal efficiency could be further improved using genetic algorithm with an 11 K increase of the outlet temperature.展开更多
Mixed convective heat transfer in a vertical parallel plate micro-porous channel with internal heat generation and viscous dissipation,varying wall heat flux ratio and wall temperature ratio at the boundaries is...Mixed convective heat transfer in a vertical parallel plate micro-porous channel with internal heat generation and viscous dissipation,varying wall heat flux ratio and wall temperature ratio at the boundaries is investigated using the Darcy-Brinkman model under local thermal non-equilibrium assumption.Numerical solution for both fluid and solid temperature distributions are obtained by applying the finite element method.The effect of pertinent parameters such as Brinkman number,Rayleigh number,Darcy number,inter-phase heat transfer coefficient,porosity scaled thermal conductivity ratio and solid internal heat generation are discussed.The results indicate that the Nusselt number increases with the increase in the solid internal heat generation as well as Rayleigh number in both wall heat flux ratio and wall temperature ratio boundary conditions.It is observed that with the quantitative increase in viscous dissipation parameter Br,Nusselt number Nu increases in the presence of internal heat generation and it decreases in the absence of internal heat generation,for a specific range of values of wall heat flux ratio and wall temperature ratio.Beyond this range Nu increases with the increase in Dr regardless of internal heat generation.For the cases,constant wall temperature and wall heat flux ratios,good correlation is observed in the results obtained with that of available in the literature.展开更多
基金funding this work through Small Research Project under grant number RGP.1/141/45。
文摘The heat transfer through a concave permeable fin is analyzed by the local thermal non-equilibrium(LTNE)model.The governing dimensional temperature equations for the solid and fluid phases of the porous extended surface are modeled,and then are nondimensionalized by suitable dimensionless terms.Further,the obtained nondimensional equations are solved by the clique polynomial method(CPM).The effects of several dimensionless parameters on the fin's thermal profiles are shown by graphical illustrations.Additionally,the current study implements deep neural structures to solve physics-governed coupled equations,and the best-suited hyperparameters are attained by comparison with various network combinations.The results of the CPM and physicsinformed neural network(PINN)exhibit good agreement,signifying that both methods effectively solve the thermal modeling problem.
基金supported by the National Natural Science Foundation of China(Grant No.51806067)China Postdoctoral Science Foundation(Granted No.2015M572310)+2 种基金Fundamental Research Funds for the Central Universities(Granted No.2017MS018)Guangdong Province Science and Technology projects(Grante 2017A040402005)Guangdong Bureau of Quality and Technical Supervision Science and Technology projects(Granted No.2016CT23)。
文摘To investigate the natural convective process in a hydrodynamically and thermally anisotropic porous medium at the representative elementary volume(REV)scale,the present work presented a multiplerelaxation-time lattice Boltzmann method(MRT-LBM)based on the assumption of local thermal non-equilibrium conditions(LTNE).Three sets of distribution function were used to solve the coupled momentum and heat transfer equations.One set was used to compute the flow field based on the generalized non-Darcy model;the other two sets were used to solve the temperature fields of fluid and solid under the LTNE.To describe the anisotropy of flow field of the porous media,a permeability tensor and a Forchheimer coefficient tensor were introduced into the model.Additionally,a heat conductivity tensor and a special relaxation matrix with some off-diagonal elements were selected for the thermal anisotropy.Furthermore,by selecting an appropriate equilibrium moments and discrete source terms accounting for the local thermal non-equilibrium effect,as well as choosing an off-diagonal relaxation matrix with some specific elements,the presented model can recover the exact governing equations for natural convection under LTNE with anisotropic permeability and thermal conductivity with no deviation terms through the Chapman-Enskog procedure.Finally,the proposed model was adopted to simulate several benchmark problems.Good agreements with results in the available literatures can be achieved,which indicate the wide practicability and the good accuracy of the present model.
文摘By means of a stochastic model suggested in this paper for the systems with local non-equilibrium excited thermal fluctuations, the famous Shannon entropy is extended to include the heat conduction processes controlled externally by boundary constraints of constant temperature gradients at two sides.Meanwhile,using the description of master equation for the continuous Markov processes a balance equation of stochastic entropy production valid for one dimension gaseous heat conduction systems with high values of Prandtl number has been also established.Based on it,a general expression for both the stochastic entropy production and the entropy production of fluctuations have been further deduced by theΩ-expansions.In this formalism,all kinds of stochastic contributions to the dissipation from the non-equilibrium thermal fluctuation and internal noise turn explicit.
文摘An analysis is performed to study the influence of local thermal nonequilibrium(LTNE)on unsteadyMHDlaminar boundary layer flowof viscous,incompressible fluid over a vertical stretching plate embedded in a sparsely packed porous medium in the presence of heat generation/absorption.The flow in the porous medium is governed by Brinkman-Forchheimer extended Darcy model.A uniform heat source or sink is presented in the solid phase.By applying similarity analysis,the governing partial differential equations are transformed into a set of time dependent non-linear coupled ordinary differential equations and they are solved numerically by Runge-Kutta Fehlberg method along with shooting technique.The obtained results are displayed graphically to illustrate the influence of different physical parameters on the velocity,temperature profile and heat transfer rate for both fluid and solid phases.Moreover,the numerical results obtained in this study are compared with the existing literature in the case of LTE and found that they are in good agreement.
文摘Steel industry is high energy-consuming industry, and its waste?heat recovery is critically?important for energy utilization. In this study, pipeline bundle is used to enhance heat transfer in?waste?heat recovery device,?and?associated gas-solid heat transfer and energy utilization performance with different pipeline arrangement, pipe diameter and shape of internal component are further analyzed. The temperatures of gas and particle in device with pipeline bundle periodically fluctuate in horizontal direction, and those in staggered system distribute more uniformly than those in paralleled system. Compared with paralleled device, exergy and waste heat utilization efficiency of staggered device have been improved, and they are both higher than?those without pipeline. As pipe diameter increases, exergy and waste heat utilization efficiency first increases and then decreases, and they reach the maxima with optimal pipe diameter.?As the width of internal component keeps constant, influence of its shape on heat transfer is very little.
文摘We investigate the subsurface heat exchange process in EGS (enhanced geothermal systems) with a previously developed novel model. This model treats the porous heat reservoir as an equivalent porous medium of a single porosity. However, it considers local thermal non-equilibrium between solid rock matrix and fluid flowing in the factures and employs two energy conservation equations to describe heat transfer in the rock matrix and in the fractures, respectively, enabling the modeling and analyses of convective heat exchange in the heat reservoir. Another salient feature of this model is its capability of simulating the complete subsurface heat exchange process in EGS. The EGS subsurface geometry of interest physically consists of multiple domains: open channels for injection and production wells, the artificial heat reservoir, and the rocks enclosing the heat reservoir, while computationally we treat it as a single-domain of multiple sub-regions associated with different sets of characteristic properties (porosity and permeability, etc.). This circumvents typical difficulties about matching boundary conditions between sub-domains in traditional multi-domain approaches and facilitates numerical implementation and simulation of the complete subsurface heat exchange process. This model is used to perform a comprehensive parametric study with respect to an imaginary doublet EGS. Effects of several parameters, including the permeability of heat reservoir, heat exchange coefficient in the heat reservoir, the specific area of fractures in the heat reservoir, and thermal compensation from surrounding rocks, on the heat extraction efficiency and EGS lifetime are analyzed.
基金supported by the Major Program of the National Natural Science Foundation of China (Grant No. 51590901)the National Natural Science Foundation of China (Grant Nos. 51976156 and51721004)。
文摘A gradually-varied porous structure is designed to increase the thermal performance of the porous volumetric solar receiver.Based on the replica method and multilayer recoating technique, the silicon carbide porous ceramic with linear-changed geometrical parameters is fabricated. The performances of the uniform and gradually-varied porous volumetric solar receivers are studied by both experiment and numerical simulation. An optimization method combining genetic algorithm and computational fluid dynamics analysis is applied to determine the optimum porosity distribution. The results present that porous volumetric solar receiver with linear-changed geometrical parameters exhibits better thermal performance than the uniform porous volumetric solar receivers, especially when the thickness of the receiver is small. Larger porosity in the front is beneficial for increasing the solar radiation penetration depth, which limits the reflectance and thermal radiative losses. Smaller porosity in the rear traps more solar radiation and increases the convective heat transfer. When the receiver’s thickness is larger, the performance of the gradually-varied volumetric solar receiver is nearly identical to that of the uniform receiver with largest porosity. The double-layer configuration is found to be the optimized structure of the gradually-varied porous volumetric solar receiver. The thermal efficiency could be further improved using genetic algorithm with an 11 K increase of the outlet temperature.
文摘Mixed convective heat transfer in a vertical parallel plate micro-porous channel with internal heat generation and viscous dissipation,varying wall heat flux ratio and wall temperature ratio at the boundaries is investigated using the Darcy-Brinkman model under local thermal non-equilibrium assumption.Numerical solution for both fluid and solid temperature distributions are obtained by applying the finite element method.The effect of pertinent parameters such as Brinkman number,Rayleigh number,Darcy number,inter-phase heat transfer coefficient,porosity scaled thermal conductivity ratio and solid internal heat generation are discussed.The results indicate that the Nusselt number increases with the increase in the solid internal heat generation as well as Rayleigh number in both wall heat flux ratio and wall temperature ratio boundary conditions.It is observed that with the quantitative increase in viscous dissipation parameter Br,Nusselt number Nu increases in the presence of internal heat generation and it decreases in the absence of internal heat generation,for a specific range of values of wall heat flux ratio and wall temperature ratio.Beyond this range Nu increases with the increase in Dr regardless of internal heat generation.For the cases,constant wall temperature and wall heat flux ratios,good correlation is observed in the results obtained with that of available in the literature.