The strategy on repair and strengthening of existing bridges based on time-dependent reliability was analyzed with the maximum expected benefit as the objective function. A sample of risk-ranking decision was illustra...The strategy on repair and strengthening of existing bridges based on time-dependent reliability was analyzed with the maximum expected benefit as the objective function. A sample of risk-ranking decision was illustrated based on updated inspection information with 35 survival age. The effect of improvement of live loads and difference of repair methods on time-dependent reliability of existing bridges are considered. The results show that the decision method can be used in real project, with the cost of failure consequence and the risk of failure considered.展开更多
The physical properties of a reliable acoustic path (RAP) are analysed and subsequently a weighted-subspace~ fitting matched field (WSF-MF) method for passive localization is presented by exploiting the properties...The physical properties of a reliable acoustic path (RAP) are analysed and subsequently a weighted-subspace~ fitting matched field (WSF-MF) method for passive localization is presented by exploiting the properties of the RAP environment. The RAP is an important acoustic duct in the deep ocean, which occurs when the receiver is placed near the bottom where the sound velocity exceeds the maximum sound velocity in the vicinity of the surface. It is found that in the RAP environment the transmission loss is rather low and no blind zone of surveillance exists in a medium range. The ray theory is used to explain these phenomena. Furthermore, the analysis of the arrival structures shows that the source localization method based on arrival angle is feasible in this environment. However, the conventional methods suffer from the complicated and inaccurate estimation of the arrival angle. In this paper, a straightforward WSF-MF method is derived to exploit the information about the arrival angles indirectly. The method is to minimize the distance between the signal subspace and the spanned space by the array manifold in a finite range-depth space rather than the arrival-angle space. Simulations are performed to demonstrate the features of the method, and the results are explained by the arrival structures in the RAP environment.展开更多
With the frame of the time-dependent local density approximation, an efficient description of the optical response of clusters has been used to study the photo-absorption cross section of Na2 and Na4 clusters. It is s...With the frame of the time-dependent local density approximation, an efficient description of the optical response of clusters has been used to study the photo-absorption cross section of Na2 and Na4 clusters. It is shown that our calculated results are in good agreement with the experiment. In addition, our calculated spectrum for the Na4 cluster is in better agreement with experiment than the GW absorption spectrum.展开更多
This study presents a new tool for solving stochastic boundary-value problems. This tool is created by modify the previous spectral stochastic meshless local Petrov-Galerkin method using the MLPG5 scheme. This modifie...This study presents a new tool for solving stochastic boundary-value problems. This tool is created by modify the previous spectral stochastic meshless local Petrov-Galerkin method using the MLPG5 scheme. This modified spectral stochastic meshless local Petrov-Galerkin method is selectively applied to predict the structural failure probability with the uncertainty in the spatial variability of mechanical properties. Except for the MLPG5 scheme, deriving the proposed spectral stochastic meshless local Petrov-Galerkin formulation adopts generalized polynomial chaos expansions of random mechanical properties. Predicting the structural failure probability is based on the first-order reliability method. Further comparing the spectral stochastic finite element-based and meshless local Petrov-Galerkin-based predicted structural failure probabilities indicates that the proposed spectral stochastic meshless local Petrov-Galerkin method predicts the more accurate structural failure probability than the spectral stochastic finite element method does. In addition, generating spectral stochastic meshless local Petrov-Galerkin results are considerably time-saving than generating Monte-Carlo simulation results does. In conclusion, the spectral stochastic meshless local Petrov-Galerkin method serves as a time-saving tool for solving stochastic boundary-value problems sufficiently accurately.展开更多
In order to consider the time-dependent characteristic of risk factors of hydropower project,the method of stochastic process simulating structure resistance and load effect is adopted.On the basis of analyzing the st...In order to consider the time-dependent characteristic of risk factors of hydropower project,the method of stochastic process simulating structure resistance and load effect is adopted.On the basis of analyzing the structure characteristics and mode of operation,the operation safety risk rate assessment model of hydropower project is established on the comprehensive application of the improved analytic hierarchy process,the time-dependent reliability theory and the risk rate threshold.A scheme to demonstrate the time-dependent risk rate assessment method for an example of the earth-rock dam is particularly implemented by the proposed approach.The example shows that operation safety risk rate is closely related to both the service period and design standard;considering the effect of time-dependent,the risk rate increases with time and the intersection of them reflects the technical service life of structures.It could provide scientific basis for the operation safety and risk decision of the hydropower project by predicting the trend of risk rate via this model.展开更多
Engineering structures are often subjected to the influences of performance deterioration and multiple hazards during their service lives,and consequently may suffer from damage/failure as a result of external loads.S...Engineering structures are often subjected to the influences of performance deterioration and multiple hazards during their service lives,and consequently may suffer from damage/failure as a result of external loads.Structural reliability and resilience assessment is a powerful tool for quantifying the structural ability to withstand these environmental or operational attacks.This paper proposes new formulas for structural time-dependent reliability and resilience analyses in the presence of multiple hazards,which are functions of the duration of the reference period of interest.The joint impacts of nonstationarities in multiple hazards due to a changing environment,as well as the deterioration of structural performance,are explicitly incorporated.The correlation between the structural resistances/capacities associated with different hazard types is modeled by employing a copula function.It is observed that,under the context of multiple hazards and aging effects,the time-dependent resilience takes a generalized form of time-dependent reliability.The proposed formulas can be used to guide the adaptive design of structures,where adaptive strategies are identified across a range of possible future service conditions.An example is presented to demonstrate the applicability of the proposed method for structural reliability and resilience analyses.展开更多
Combined with current specifications and stress characteristics of concrete filled steel tubular (CFST) arch bridges, the determination principle of safe-middle-failure threestage mode is given. Accordingly, damage ...Combined with current specifications and stress characteristics of concrete filled steel tubular (CFST) arch bridges, the determination principle of safe-middle-failure threestage mode is given. Accordingly, damage probability and failure probability and the corresponding reliability indices are calculated; a direct relationship between reliability indices and three-stage working status is made. Based on the three-stage working mode, a combined FNM (finite element-neural network- Monte-Carlo simulation) method is put forward to estimate the reliability of existing bridges. According to time-dependent reliability theory, subsequent service time is divided into several stages; minimum samples required by the Monte-Carlo method are generated by random sampling; training samples are calculated by the finite element method, and the training samples are extended by the neural network; failure probability and damage probability are calculated by the Monte-Carlo method. Thus, time dependent reliability indices are obtained, and the working status is judged. A case study is investigated to estimate the reliability of an actual bridge by the FNM method. The bridge is a CFST arch bridge with an 83.6 m span and it has been in operation for 10 years. According to analysis results, in the tenth year, the example bridge is still in safe status. This conclusion is consistent with the facts, which proves the feasibility of the FNM method for estimating the reliability of existing bridges.展开更多
High-speed bogie frame is a key mechanical component in a train system. The reliability analysis of the bogie is necessary to the safety of high-speed train. Reliability analysis of a bogie frame was considered. The e...High-speed bogie frame is a key mechanical component in a train system. The reliability analysis of the bogie is necessary to the safety of high-speed train. Reliability analysis of a bogie frame was considered. The equivalent load method was employed to account for random repeated loads in structural reliability analysis. Degradation of material strength was regarded as a Gamma process. The probabilistic perturbation method was, then, employed for response moment computation. Example of a high-speed train bogie structure under time-variant load was employed for reliability and sensitivity analyses. Monte-Carlo simulation verifies the accuracy and efficiency of the proposed method in time-variant reliability analysis. The analysis results show that the reliability calculation considering the strength degradation and repeated load is closer to the practicality than the method of considering reliability calculation only. Its decreasing velocity is faster than the traditional reliability. The reliability sensitivity value changes over time. The analysis results provide a variation trend of reliability and sensitivity to design and usage of bogie frame.展开更多
Callovo-Oxfordian(COx)claystone has been considered as a potential host rock for geological radioactive waste disposal in France(Cigéo project).During the exploitation phase(100 years),the stability of drifts(e.g...Callovo-Oxfordian(COx)claystone has been considered as a potential host rock for geological radioactive waste disposal in France(Cigéo project).During the exploitation phase(100 years),the stability of drifts(e.g.galleries/alveoli)within the disposal is assured by the liner,which includes two layers:concrete arch segment and compressible material.The latter exhibits a significant deformation capacity(about 50%)under low stress(<3 MPa).Although the response of these underground structures can be governed by complex thermo-hydro-mechanical coupling,the creep behavior of COx claystone has been considered as the main factor controlling the increase of stress state in the concrete liner and hence the long-term stability of drifts.Therefore,by focusing only on the purely mechanical behavior,this study aims at investigating the uncertainty effect of the COx claystone time-dependent properties on the stability of an alveolus of Cigéo during the exploitation period.To describe the creep behavior of COx claystone,we use Lemaitre’s viscoplastic model with three parameters whose uncertainties are identified from laboratory creep tests.For the reliability analysis,an extension of a well-known Kriging metamodeling technique is proposed to assess the exceedance probability of acceptable stress in the concrete liner of the alveolus.The open-source code Code_Aster is chosen for the direct numerical evaluations of the performance function.The Kriging-based reliability analysis elucidates the effect of the uncertainty of COx claystone on the long-term stability of the concrete liner.Moreover,the role of the compressible material layer between the concrete liner and the host rock is also highlighted.展开更多
Stress relaxation of glass is a dualism effect, it often lead to strength degradation in strengthened glass, but on the other hand, it improves the reliability and stress-uniformity of glasses. In this work, stress re...Stress relaxation of glass is a dualism effect, it often lead to strength degradation in strengthened glass, but on the other hand, it improves the reliability and stress-uniformity of glasses. In this work, stress relaxation of soda-lime glass was investigated using three-point bending tests at 400-560℃ which is near the brittle to ductile transition temperature, for enhancing the safety of glass productions and exploring the most economic anneal process. The experimental results show that the speed of stress relaxation increases but the ultimate stress decreases with increasing temperature. The stress uniformity of the glass samples before and after anneal was examined using spherical indentation at arranged testing points. It indicates that the scatter of the local strength measured by the Hertzian indentation is smaller in the anneal glass than in initial specimen, so that the estimated Weibull modulus for the anneal specimen is higher. Furthermore, the strength evaluation by Hertzian indentation and statistical analysis was presented.展开更多
Electron localization in the dissociation of the symmetric linear molecular ion H3-(2+) is investigated. The numerical simulation shows that the electron localization distribution is dependent on the central freque...Electron localization in the dissociation of the symmetric linear molecular ion H3-(2+) is investigated. The numerical simulation shows that the electron localization distribution is dependent on the central frequency and peak electric field amplitude of the external ultrashort ultraviolet laser pulse. When the electrons of the ground state are excited onto the 2pσ-2Σu-+ by a one-photon process, most electrons of the dissociation states are localized at the protons on both sides symmetrically. Almost no electron is stabilized at the middle proton due to the odd symmetry of the wave function. With the increase of the frequency of the external ultraviolet laser pulse, the electron localization ratio of the middle proton increases, for more electrons of the ground state are excited onto the higher 3pσ-2Σu-+ ustate. 50.9% electrons of all the dissociation events can be captured by the middle Coulomb potential well through optimizing the central frequency and peak electric field amplitude of the ultraviolet laser pulse. Besides, a direct current(DC) electric field can be utilized to control the electron motions of the dissociation states after the excitation of an ultraviolet laser pulse, and 68.8% electrons of the dissociation states can be controlled into the middle proton.展开更多
Recent experiments report the rotation of FA(FA=HC[NH2]2+)cations significantly influence the excited-state lifetime of FAPbI3.However,the underlying mechanism remains unclear.Using ab initio nonadiabatic(NA)molecular...Recent experiments report the rotation of FA(FA=HC[NH2]2+)cations significantly influence the excited-state lifetime of FAPbI3.However,the underlying mechanism remains unclear.Using ab initio nonadiabatic(NA)molecular dynamics combined with time-domain density functional simulations,we have demonstrated that reorientation of partial FA cations significantly inhibits nonradiative electron-hole recombination with respect to the pristine FAPbI3 due to the decreased NA coupling by localizing electron and hole in different positions and the suppressed atomic motions.Slow nuclear motions simultaneously increase the decoherence time,which is overcome by the reduced NA coupling,extending electron-hole recombination time scales to several nanoseconds and being about 3.9 times longer than that in pristine FAPbI3,which occurs within sub-nanosecond and agrees with experiment.Our study established the mechanism for the experimentally reported prolonged excited-state lifetime,providing a rational strategy for design of high performance of perovskite solar cells and optoelectronic devices.展开更多
This paper develops a dual-indicator discrete method(DDM)for evaluating the system reliability performance of long soil subgrade slopes.First,they are segmented into many slope sections using the random finite element...This paper develops a dual-indicator discrete method(DDM)for evaluating the system reliability performance of long soil subgrade slopes.First,they are segmented into many slope sections using the random finite element method,to ensure each section statistically contains one potential local instability.Then,the k-out-of-n system model is used to describe the relationship between the total number of sections n,the acceptable number of failure sections m,the reliability of sections R_(sec),and the system reliability R_(sys).Finally,m and R_(sys)are jointly used to assess the system reliability performance.For cases lacking spatial data of soil properties,a simplified DDM is provided in which long subgrade slopes are segmented by the empirical value of section length and R_(sec)is substituted by that of crosssections taken from them.The results show that(1)DDM can provide the probability that the actual number of local instabilities does not exceed a desired threshold.(2)R_(sys)decreases with increasing n or decreasing R_(sec);that is,it is likely to encounter more local instabilities for longer or weaker subgrade slopes.n is negatively related to the horizontal scale of fluctuation of soil properties and positively related to the total length of subgrade slopes L.(3)When L is sufficiently large,there is a considerable opportunity to meet local instabilities even if R_(sec)is large enough.展开更多
基金TheLiaoningProviceCommunicationDe partmentKeyScienceFoundation (No .0 10 1)
文摘The strategy on repair and strengthening of existing bridges based on time-dependent reliability was analyzed with the maximum expected benefit as the objective function. A sample of risk-ranking decision was illustrated based on updated inspection information with 35 survival age. The effect of improvement of live loads and difference of repair methods on time-dependent reliability of existing bridges are considered. The results show that the decision method can be used in real project, with the cost of failure consequence and the risk of failure considered.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11174235 and 61101192)the Science and Technology Development Project of Shaanxi Province,China(Grant No.2010KJXX-02)+2 种基金the Program for New Century Excellent Talents in University,China(Grant No.NCET-08-0455)the Foundation of State Key Lab of Acoustics,China(Grant No.SKLOA201101)the Doctorate Foundation of Northwestern Polytechnical University,China(Grant No.CX201226)
文摘The physical properties of a reliable acoustic path (RAP) are analysed and subsequently a weighted-subspace~ fitting matched field (WSF-MF) method for passive localization is presented by exploiting the properties of the RAP environment. The RAP is an important acoustic duct in the deep ocean, which occurs when the receiver is placed near the bottom where the sound velocity exceeds the maximum sound velocity in the vicinity of the surface. It is found that in the RAP environment the transmission loss is rather low and no blind zone of surveillance exists in a medium range. The ray theory is used to explain these phenomena. Furthermore, the analysis of the arrival structures shows that the source localization method based on arrival angle is feasible in this environment. However, the conventional methods suffer from the complicated and inaccurate estimation of the arrival angle. In this paper, a straightforward WSF-MF method is derived to exploit the information about the arrival angles indirectly. The method is to minimize the distance between the signal subspace and the spanned space by the array manifold in a finite range-depth space rather than the arrival-angle space. Simulations are performed to demonstrate the features of the method, and the results are explained by the arrival structures in the RAP environment.
基金The project supported by National Natural Science Foundation of China under Grant Nos. 10405025, 10575012, 10435020, and 10535010
文摘With the frame of the time-dependent local density approximation, an efficient description of the optical response of clusters has been used to study the photo-absorption cross section of Na2 and Na4 clusters. It is shown that our calculated results are in good agreement with the experiment. In addition, our calculated spectrum for the Na4 cluster is in better agreement with experiment than the GW absorption spectrum.
文摘This study presents a new tool for solving stochastic boundary-value problems. This tool is created by modify the previous spectral stochastic meshless local Petrov-Galerkin method using the MLPG5 scheme. This modified spectral stochastic meshless local Petrov-Galerkin method is selectively applied to predict the structural failure probability with the uncertainty in the spatial variability of mechanical properties. Except for the MLPG5 scheme, deriving the proposed spectral stochastic meshless local Petrov-Galerkin formulation adopts generalized polynomial chaos expansions of random mechanical properties. Predicting the structural failure probability is based on the first-order reliability method. Further comparing the spectral stochastic finite element-based and meshless local Petrov-Galerkin-based predicted structural failure probabilities indicates that the proposed spectral stochastic meshless local Petrov-Galerkin method predicts the more accurate structural failure probability than the spectral stochastic finite element method does. In addition, generating spectral stochastic meshless local Petrov-Galerkin results are considerably time-saving than generating Monte-Carlo simulation results does. In conclusion, the spectral stochastic meshless local Petrov-Galerkin method serves as a time-saving tool for solving stochastic boundary-value problems sufficiently accurately.
基金Foundation for Innovative Research Groups of the National Natural Science Foundation of China(No. 51021004)
文摘In order to consider the time-dependent characteristic of risk factors of hydropower project,the method of stochastic process simulating structure resistance and load effect is adopted.On the basis of analyzing the structure characteristics and mode of operation,the operation safety risk rate assessment model of hydropower project is established on the comprehensive application of the improved analytic hierarchy process,the time-dependent reliability theory and the risk rate threshold.A scheme to demonstrate the time-dependent risk rate assessment method for an example of the earth-rock dam is particularly implemented by the proposed approach.The example shows that operation safety risk rate is closely related to both the service period and design standard;considering the effect of time-dependent,the risk rate increases with time and the intersection of them reflects the technical service life of structures.It could provide scientific basis for the operation safety and risk decision of the hydropower project by predicting the trend of risk rate via this model.
基金supported by the Vice-Chancellor’s Postdoctoral Research Fellowship from the University of Wollongong.
文摘Engineering structures are often subjected to the influences of performance deterioration and multiple hazards during their service lives,and consequently may suffer from damage/failure as a result of external loads.Structural reliability and resilience assessment is a powerful tool for quantifying the structural ability to withstand these environmental or operational attacks.This paper proposes new formulas for structural time-dependent reliability and resilience analyses in the presence of multiple hazards,which are functions of the duration of the reference period of interest.The joint impacts of nonstationarities in multiple hazards due to a changing environment,as well as the deterioration of structural performance,are explicitly incorporated.The correlation between the structural resistances/capacities associated with different hazard types is modeled by employing a copula function.It is observed that,under the context of multiple hazards and aging effects,the time-dependent resilience takes a generalized form of time-dependent reliability.The proposed formulas can be used to guide the adaptive design of structures,where adaptive strategies are identified across a range of possible future service conditions.An example is presented to demonstrate the applicability of the proposed method for structural reliability and resilience analyses.
基金The National Natural Science Foundation of China(No.10672060)
文摘Combined with current specifications and stress characteristics of concrete filled steel tubular (CFST) arch bridges, the determination principle of safe-middle-failure threestage mode is given. Accordingly, damage probability and failure probability and the corresponding reliability indices are calculated; a direct relationship between reliability indices and three-stage working status is made. Based on the three-stage working mode, a combined FNM (finite element-neural network- Monte-Carlo simulation) method is put forward to estimate the reliability of existing bridges. According to time-dependent reliability theory, subsequent service time is divided into several stages; minimum samples required by the Monte-Carlo method are generated by random sampling; training samples are calculated by the finite element method, and the training samples are extended by the neural network; failure probability and damage probability are calculated by the Monte-Carlo method. Thus, time dependent reliability indices are obtained, and the working status is judged. A case study is investigated to estimate the reliability of an actual bridge by the FNM method. The bridge is a CFST arch bridge with an 83.6 m span and it has been in operation for 10 years. According to analysis results, in the tenth year, the example bridge is still in safe status. This conclusion is consistent with the facts, which proves the feasibility of the FNM method for estimating the reliability of existing bridges.
基金Projects(51135003,U1234208)supported by the National Natural Science Foundation of ChinaProject(IRT0816)supported by Program for Changjiang Scholars and Innovative Research Team in University of ChinaProject(N110603001)supported by the Fundamental Research Funds for the Central Universities of China
文摘High-speed bogie frame is a key mechanical component in a train system. The reliability analysis of the bogie is necessary to the safety of high-speed train. Reliability analysis of a bogie frame was considered. The equivalent load method was employed to account for random repeated loads in structural reliability analysis. Degradation of material strength was regarded as a Gamma process. The probabilistic perturbation method was, then, employed for response moment computation. Example of a high-speed train bogie structure under time-variant load was employed for reliability and sensitivity analyses. Monte-Carlo simulation verifies the accuracy and efficiency of the proposed method in time-variant reliability analysis. The analysis results show that the reliability calculation considering the strength degradation and repeated load is closer to the practicality than the method of considering reliability calculation only. Its decreasing velocity is faster than the traditional reliability. The reliability sensitivity value changes over time. The analysis results provide a variation trend of reliability and sensitivity to design and usage of bogie frame.
文摘Callovo-Oxfordian(COx)claystone has been considered as a potential host rock for geological radioactive waste disposal in France(Cigéo project).During the exploitation phase(100 years),the stability of drifts(e.g.galleries/alveoli)within the disposal is assured by the liner,which includes two layers:concrete arch segment and compressible material.The latter exhibits a significant deformation capacity(about 50%)under low stress(<3 MPa).Although the response of these underground structures can be governed by complex thermo-hydro-mechanical coupling,the creep behavior of COx claystone has been considered as the main factor controlling the increase of stress state in the concrete liner and hence the long-term stability of drifts.Therefore,by focusing only on the purely mechanical behavior,this study aims at investigating the uncertainty effect of the COx claystone time-dependent properties on the stability of an alveolus of Cigéo during the exploitation period.To describe the creep behavior of COx claystone,we use Lemaitre’s viscoplastic model with three parameters whose uncertainties are identified from laboratory creep tests.For the reliability analysis,an extension of a well-known Kriging metamodeling technique is proposed to assess the exceedance probability of acceptable stress in the concrete liner of the alveolus.The open-source code Code_Aster is chosen for the direct numerical evaluations of the performance function.The Kriging-based reliability analysis elucidates the effect of the uncertainty of COx claystone on the long-term stability of the concrete liner.Moreover,the role of the compressible material layer between the concrete liner and the host rock is also highlighted.
基金supported by the National Outstanding Young Scientist Foundation(No.50125204)National High Technical Research and Development Programme of China(No.A339010).
文摘Stress relaxation of glass is a dualism effect, it often lead to strength degradation in strengthened glass, but on the other hand, it improves the reliability and stress-uniformity of glasses. In this work, stress relaxation of soda-lime glass was investigated using three-point bending tests at 400-560℃ which is near the brittle to ductile transition temperature, for enhancing the safety of glass productions and exploring the most economic anneal process. The experimental results show that the speed of stress relaxation increases but the ultimate stress decreases with increasing temperature. The stress uniformity of the glass samples before and after anneal was examined using spherical indentation at arranged testing points. It indicates that the scatter of the local strength measured by the Hertzian indentation is smaller in the anneal glass than in initial specimen, so that the estimated Weibull modulus for the anneal specimen is higher. Furthermore, the strength evaluation by Hertzian indentation and statistical analysis was presented.
基金supported by the National Natural Science Foundation of China(Grant Nos.11127901,61521093,11134010,11227902,11222439,and 11274325)the National Basic Research Program of China(Grant No.2011CB808103)
文摘Electron localization in the dissociation of the symmetric linear molecular ion H3-(2+) is investigated. The numerical simulation shows that the electron localization distribution is dependent on the central frequency and peak electric field amplitude of the external ultrashort ultraviolet laser pulse. When the electrons of the ground state are excited onto the 2pσ-2Σu-+ by a one-photon process, most electrons of the dissociation states are localized at the protons on both sides symmetrically. Almost no electron is stabilized at the middle proton due to the odd symmetry of the wave function. With the increase of the frequency of the external ultraviolet laser pulse, the electron localization ratio of the middle proton increases, for more electrons of the ground state are excited onto the higher 3pσ-2Σu-+ ustate. 50.9% electrons of all the dissociation events can be captured by the middle Coulomb potential well through optimizing the central frequency and peak electric field amplitude of the ultraviolet laser pulse. Besides, a direct current(DC) electric field can be utilized to control the electron motions of the dissociation states after the excitation of an ultraviolet laser pulse, and 68.8% electrons of the dissociation states can be controlled into the middle proton.
基金supported by the National Natural Science Foundation of China(No.21573022 and No.51861135101)the Recruitment Program of Global Youth Experts of Chinathe Beijing Normal University Startup。
文摘Recent experiments report the rotation of FA(FA=HC[NH2]2+)cations significantly influence the excited-state lifetime of FAPbI3.However,the underlying mechanism remains unclear.Using ab initio nonadiabatic(NA)molecular dynamics combined with time-domain density functional simulations,we have demonstrated that reorientation of partial FA cations significantly inhibits nonradiative electron-hole recombination with respect to the pristine FAPbI3 due to the decreased NA coupling by localizing electron and hole in different positions and the suppressed atomic motions.Slow nuclear motions simultaneously increase the decoherence time,which is overcome by the reduced NA coupling,extending electron-hole recombination time scales to several nanoseconds and being about 3.9 times longer than that in pristine FAPbI3,which occurs within sub-nanosecond and agrees with experiment.Our study established the mechanism for the experimentally reported prolonged excited-state lifetime,providing a rational strategy for design of high performance of perovskite solar cells and optoelectronic devices.
基金supported by the National Natural Science Foundation of China(Nos.52078435 and 51878560)the financial support from the open research fund of MOE Key Laboratory of High-Speed Railway Engineering。
文摘This paper develops a dual-indicator discrete method(DDM)for evaluating the system reliability performance of long soil subgrade slopes.First,they are segmented into many slope sections using the random finite element method,to ensure each section statistically contains one potential local instability.Then,the k-out-of-n system model is used to describe the relationship between the total number of sections n,the acceptable number of failure sections m,the reliability of sections R_(sec),and the system reliability R_(sys).Finally,m and R_(sys)are jointly used to assess the system reliability performance.For cases lacking spatial data of soil properties,a simplified DDM is provided in which long subgrade slopes are segmented by the empirical value of section length and R_(sec)is substituted by that of crosssections taken from them.The results show that(1)DDM can provide the probability that the actual number of local instabilities does not exceed a desired threshold.(2)R_(sys)decreases with increasing n or decreasing R_(sec);that is,it is likely to encounter more local instabilities for longer or weaker subgrade slopes.n is negatively related to the horizontal scale of fluctuation of soil properties and positively related to the total length of subgrade slopes L.(3)When L is sufficiently large,there is a considerable opportunity to meet local instabilities even if R_(sec)is large enough.