Flexural and eigen-buckling analyses for rectangular steel-concrete partially composite plates(PCPs)with interlayer slip under simply supported and clamped boundary conditions are conducted using the weak form quadrat...Flexural and eigen-buckling analyses for rectangular steel-concrete partially composite plates(PCPs)with interlayer slip under simply supported and clamped boundary conditions are conducted using the weak form quadrature element method(QEM).Both of the derivatives and integrals in the variational description of a problem to be solved are directly evaluated by the aid of identical numerical interpolation points in the weak form QEM.The effectiveness of the presented numerical model is validated by comparing numerical results of the weak form QEM with those from FEM or analytic solution.It can be observed that only one quadrature element is fully competent for flexural and eigen-buckling analysis of a rectangular partially composite plate with shear connection stiffness commonly used.The numerical integration order of quadrature element can be adjusted neatly to meet the convergence requirement.The quadrature element model presented here is an effective and promising tool for further analysis of steel-concrete PCPs under more general circumstances.Parametric studies on the shear connection stiffness and length-width ratio of the plate are also presented.It is shown that the flexural deflections and the critical buckling loads of PCPs are significantly affected by the shear connection stiffness when its value is within a certain range.展开更多
The element-free method is a new numerical technique presented in recent years.It uses the moving least square(MLS) approximation as its shape function,and it is determined by the basic function and weight function.Th...The element-free method is a new numerical technique presented in recent years.It uses the moving least square(MLS) approximation as its shape function,and it is determined by the basic function and weight function.The weight function is the mainly determining factor,so it greatly affects the accuracy of the computational results.The element-free Galerkin method(EFGM) was applied for the solution to plastic large deformation.The simulation of metal rheological forming was successfully done by programming and its results were visualized by using the plotting and data analyses software Tecplot.Then plastic strain under different stages during rheological forming and the three principal stresses at the last deformation were obtained.The example shows the feasibility of EFGM used for metal rheological forming and provides a new method for numerical simulation of rheological forming of complex parts.展开更多
Metal forming plays an important role in manufacturing industry and is widely applied in industries.The tradi- tional finite element method(FEM)numerical simulation is commonly used to predict metal forming process.Co...Metal forming plays an important role in manufacturing industry and is widely applied in industries.The tradi- tional finite element method(FEM)numerical simulation is commonly used to predict metal forming process.Conventional finite element analysis of metal forming processes often breaks down due to severe mesh distortion,therefore time-consuming remeshing is necessary.Meshfree methods have been developed since 1977 and can avoid this problem.This new generation of computational methods reduces time-consuming model generation and refinement effort,and its shape function has higher order connectivity than FEM’s.In this paper the velocity shape functions are developed from a reproducing kernel approximation that satisfies consistency conditions and is used to analyze metal tension rigid viscoplastic deforming and Magnesium Alloy(MB 15)sheet superplastic ten- sion forming.A meshfree method metal forming modeling program is set up,the partition of unity method is used to compute the integrations in weak form equations and penalty method is used to impose the essential boundary condition exactly.Metal forming examples,such as sheet metal superplastic tension forming and metal rigid viscoplastic tension forming,are analyzed to demon- strate the performance of mesh free method.展开更多
This paper presents the application of anisotropic damage theory to the study of forming limit diagram of A12024T3 aluminum alloy sheet. In the prediction of limiting strains of the aluminum sheet structure, a finite ...This paper presents the application of anisotropic damage theory to the study of forming limit diagram of A12024T3 aluminum alloy sheet. In the prediction of limiting strains of the aluminum sheet structure, a finite element cell model has been constructed. The cell model consists of two phases, the aluminum alloy matrix and the intermetallic cluster. The material behavior of the aluminum alloy matrix is described with a fully coupled elasto-plastic damage constitutive equation. The intermetallic cluster is assumed to be elastic and brittle. By varying the stretching ratio, the limiting strains of the sheet under biaxial stretching have been predicted by using the necking criterion proposed. The prediction is in good agreement with the experimental findings. Moreover, the finite element cell model can provide information for understanding the microscopic damage mechanism of the aluminum alloy. Over-estimation of the limit strains may result if the effect of material damage is ignored in the sheet metal forming study.展开更多
The meshless local Petrov_Galerkin (MLPG) method for solving the bending problem of the thin plate were presented and discussed. The method used the moving least_squares approximation to interpolate the solution varia...The meshless local Petrov_Galerkin (MLPG) method for solving the bending problem of the thin plate were presented and discussed. The method used the moving least_squares approximation to interpolate the solution variables, and employed a local symmetric weak form. The present method was a truly meshless one as it did not need a finite element or boundary element mesh, either for purpose of interpolation of the solution, or for the integration of the energy. All integrals could be easily evaluated over regularly shaped domains (in general, spheres in three_dimensional problems) and their boundaries. The essential boundary conditions were enforced by the penalty method. Several numerical examples were presented to illustrate the implementation and performance of the present method. The numerical examples presented show that high accuracy can be achieved for arbitrary grid geometries for clamped and simply_supported edge conditions. No post processing procedure is required to computer the strain and stress, since the original solution from the present method, using the moving least squares approximation, is already smooth enough.展开更多
A method to analyze the effect of form errors and local deformation on the assembly accu- racy and its stability in a non-rigid assembly system is proposed. The contact finite element method was used to obtain local d...A method to analyze the effect of form errors and local deformation on the assembly accu- racy and its stability in a non-rigid assembly system is proposed. The contact finite element method was used to obtain local deformation of mating surfaces, which was superposed onto form errors to obtain real mating surface data of assemblies. Then mating variation was obtained by establishing vir- tual contact planes. Finally, an experiment of the assembly of two cylindrical components was car- ried out to verify the validity of the proposed method. By comparing the calculation accuracies of 3D assembly with and without taking into account local deformation, the results showed that the effects of local deformation of mating surfaces on calculation accuracy of mating variation was not neglect- able compared with form errors.展开更多
In this paper, we use the weak Galerkin (WG) finite element method to solve the mixed form linear elasticity problem. In the mixed form, we get the discrete of proximation of the stress tensor and the displacement f...In this paper, we use the weak Galerkin (WG) finite element method to solve the mixed form linear elasticity problem. In the mixed form, we get the discrete of proximation of the stress tensor and the displacement field. For the WG methods, we define the weak function and the weak differential operator in an optimal polynomial approximation spaces. The optimal error estimates are given and numerical results are presented to demonstrate the efficiency and the accuracy of the weak Galerkin finite element method.展开更多
A stabilizer-free weak Galerkin finite element method is proposed for the Stokes equations in this paper.Here we omit the stabilizer term in the new method by increasing the degree of polynomial approximating spaces f...A stabilizer-free weak Galerkin finite element method is proposed for the Stokes equations in this paper.Here we omit the stabilizer term in the new method by increasing the degree of polynomial approximating spaces for the weak gradient operators.The new algorithm is simple in formulation and the computational complexity is also reduced.The corresponding approximating spaces consist of piecewise polynomials of degree k≥1 for the velocity and k-1 for the pressure,respectively.Optimal order error estimates have been derived for the velocity in both H^(1) and L^(2) norms and for the pressure in L^(2) norm.Numerical examples are presented to illustrate the accuracy and convergency of the method.展开更多
基金Project(51508562)supported by the National Natural Science Foundation of ChinaProject(ZK18-03-49)supported by the Scientific Research Program of National University of Defense Technology,China
文摘Flexural and eigen-buckling analyses for rectangular steel-concrete partially composite plates(PCPs)with interlayer slip under simply supported and clamped boundary conditions are conducted using the weak form quadrature element method(QEM).Both of the derivatives and integrals in the variational description of a problem to be solved are directly evaluated by the aid of identical numerical interpolation points in the weak form QEM.The effectiveness of the presented numerical model is validated by comparing numerical results of the weak form QEM with those from FEM or analytic solution.It can be observed that only one quadrature element is fully competent for flexural and eigen-buckling analysis of a rectangular partially composite plate with shear connection stiffness commonly used.The numerical integration order of quadrature element can be adjusted neatly to meet the convergence requirement.The quadrature element model presented here is an effective and promising tool for further analysis of steel-concrete PCPs under more general circumstances.Parametric studies on the shear connection stiffness and length-width ratio of the plate are also presented.It is shown that the flexural deflections and the critical buckling loads of PCPs are significantly affected by the shear connection stiffness when its value is within a certain range.
基金Key project(02103) supported by National Education Department of ChinaKey project(02A008) supported by the Education Department of Hunan Province,China+3 种基金Project(2005090) supported by Central South University of Forestry and TechnologyProject(03JJY3007) supported by the Natural Science Foundation of Hunan Province,ChinaProject supported by the Rewarding Project for Excellent PhD Thesis of Hunan Province,ChinaProject(07031B) supported by Scientific Research Fund of Central South University of Forestry and Technology
文摘The element-free method is a new numerical technique presented in recent years.It uses the moving least square(MLS) approximation as its shape function,and it is determined by the basic function and weight function.The weight function is the mainly determining factor,so it greatly affects the accuracy of the computational results.The element-free Galerkin method(EFGM) was applied for the solution to plastic large deformation.The simulation of metal rheological forming was successfully done by programming and its results were visualized by using the plotting and data analyses software Tecplot.Then plastic strain under different stages during rheological forming and the three principal stresses at the last deformation were obtained.The example shows the feasibility of EFGM used for metal rheological forming and provides a new method for numerical simulation of rheological forming of complex parts.
文摘Metal forming plays an important role in manufacturing industry and is widely applied in industries.The tradi- tional finite element method(FEM)numerical simulation is commonly used to predict metal forming process.Conventional finite element analysis of metal forming processes often breaks down due to severe mesh distortion,therefore time-consuming remeshing is necessary.Meshfree methods have been developed since 1977 and can avoid this problem.This new generation of computational methods reduces time-consuming model generation and refinement effort,and its shape function has higher order connectivity than FEM’s.In this paper the velocity shape functions are developed from a reproducing kernel approximation that satisfies consistency conditions and is used to analyze metal tension rigid viscoplastic deforming and Magnesium Alloy(MB 15)sheet superplastic ten- sion forming.A meshfree method metal forming modeling program is set up,the partition of unity method is used to compute the integrations in weak form equations and penalty method is used to impose the essential boundary condition exactly.Metal forming examples,such as sheet metal superplastic tension forming and metal rigid viscoplastic tension forming,are analyzed to demon- strate the performance of mesh free method.
基金Project supported by the Research Committee of The Hong Kong Polytechnic University (No.G-YX34).
文摘This paper presents the application of anisotropic damage theory to the study of forming limit diagram of A12024T3 aluminum alloy sheet. In the prediction of limiting strains of the aluminum sheet structure, a finite element cell model has been constructed. The cell model consists of two phases, the aluminum alloy matrix and the intermetallic cluster. The material behavior of the aluminum alloy matrix is described with a fully coupled elasto-plastic damage constitutive equation. The intermetallic cluster is assumed to be elastic and brittle. By varying the stretching ratio, the limiting strains of the sheet under biaxial stretching have been predicted by using the necking criterion proposed. The prediction is in good agreement with the experimental findings. Moreover, the finite element cell model can provide information for understanding the microscopic damage mechanism of the aluminum alloy. Over-estimation of the limit strains may result if the effect of material damage is ignored in the sheet metal forming study.
文摘The meshless local Petrov_Galerkin (MLPG) method for solving the bending problem of the thin plate were presented and discussed. The method used the moving least_squares approximation to interpolate the solution variables, and employed a local symmetric weak form. The present method was a truly meshless one as it did not need a finite element or boundary element mesh, either for purpose of interpolation of the solution, or for the integration of the energy. All integrals could be easily evaluated over regularly shaped domains (in general, spheres in three_dimensional problems) and their boundaries. The essential boundary conditions were enforced by the penalty method. Several numerical examples were presented to illustrate the implementation and performance of the present method. The numerical examples presented show that high accuracy can be achieved for arbitrary grid geometries for clamped and simply_supported edge conditions. No post processing procedure is required to computer the strain and stress, since the original solution from the present method, using the moving least squares approximation, is already smooth enough.
基金Supported by the National Natural Science Foundation of China(510750355110503651375054)
文摘A method to analyze the effect of form errors and local deformation on the assembly accu- racy and its stability in a non-rigid assembly system is proposed. The contact finite element method was used to obtain local deformation of mating surfaces, which was superposed onto form errors to obtain real mating surface data of assemblies. Then mating variation was obtained by establishing vir- tual contact planes. Finally, an experiment of the assembly of two cylindrical components was car- ried out to verify the validity of the proposed method. By comparing the calculation accuracies of 3D assembly with and without taking into account local deformation, the results showed that the effects of local deformation of mating surfaces on calculation accuracy of mating variation was not neglect- able compared with form errors.
基金The authors would like to thank China National Natural Science Foundation (91630201, U1530116, 11726102, 11771179), and the Program for Cheung Kong Scholars of Ministry of Education of China, Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, 3ilin University, Changchun, 130012, P.R. China.
文摘In this paper, we use the weak Galerkin (WG) finite element method to solve the mixed form linear elasticity problem. In the mixed form, we get the discrete of proximation of the stress tensor and the displacement field. For the WG methods, we define the weak function and the weak differential operator in an optimal polynomial approximation spaces. The optimal error estimates are given and numerical results are presented to demonstrate the efficiency and the accuracy of the weak Galerkin finite element method.
基金supported in part by China Natural National Science Foundation(Nos.91630201,U1530116,11726102,11771179,93K172018Z01,11701210,JJKH20180113KJ,20190103029JH)by the Program for Cheung Kong Scholars of Ministry of Education of China,Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education.The research of Liu was partially supported by China Natural National Science Foundation(No.12001306)Guangdong Provincial Natural Science Foundation(No.2017A030310285).
文摘A stabilizer-free weak Galerkin finite element method is proposed for the Stokes equations in this paper.Here we omit the stabilizer term in the new method by increasing the degree of polynomial approximating spaces for the weak gradient operators.The new algorithm is simple in formulation and the computational complexity is also reduced.The corresponding approximating spaces consist of piecewise polynomials of degree k≥1 for the velocity and k-1 for the pressure,respectively.Optimal order error estimates have been derived for the velocity in both H^(1) and L^(2) norms and for the pressure in L^(2) norm.Numerical examples are presented to illustrate the accuracy and convergency of the method.