The S wave velocity structure in Changbaishan volcanic region was obtained from teleseismic receiver function modeling. The results show that there exist distinct low velocity layers in crust in volcano area. Beneath ...The S wave velocity structure in Changbaishan volcanic region was obtained from teleseismic receiver function modeling. The results show that there exist distinct low velocity layers in crust in volcano area. Beneath WQD station near to the Tianchi caldera the low velocity layer at 8 km depth is 20 km thick with the lowest S-wave velocity about 2.2 km/s At EDO station located 50 km north of Tianchi caldera, no obvious crustal low velocity layer is detected. In the volcanic region, the thickness of crustal low velocity layer is greater and the lowest velocity is more obvious with the distance shorter to the caldera. It indicates the existence of the high temperature material or magma reservoir in crust near the Tianchi caldera. The receiver functions and inversion result from different back azimuths at CBS permanent seismic station show that the thickness of near surface low velocity layer and Moho depth change with directions. The near surface low velocity layer is obviously thicker in south direction. The Moho depth shows slight uplifting in the direction of the caldera located. We con- sider that the special near surface velocity structure is the main cause of relatively lower prominent frequency of volcanic earthquake waveforms recorded by CBS station. The slight uplifting of Moho beneath Tianchi caldera indicates there is a material exchanging channel between upper mantle and magma reservoir in crust.展开更多
The time sequence of longitudinal velocity component at different vertical locations in turbulent boundary layer was finely measured in a wind tunnel. The concept of coarse_grained velocity structure functions, which ...The time sequence of longitudinal velocity component at different vertical locations in turbulent boundary layer was finely measured in a wind tunnel. The concept of coarse_grained velocity structure functions, which describes the relative motions of straining and compressing for multi_scale eddy structures in turbulent flows, was put forward based on the theory of locally multi_scale average. Based on the consistency between coarse_grained velocity structure function and Harr wavelet transformation,detecting method was presented, by which the coherent structures and their intermittency was identified by multi_scale flatness factor calculated by locally average structure function. Phase_averaged evolution course for multi_scale coherent eddy structures in wall turbulence were extracted by this conditional sampling to educe scheme. The dynamics course of multi_scale coherent eddy structures and their effects on statistics of turbulent flows were studied.展开更多
Tengchong volcanic area is located near the impinging and underthrust margin of India and Eurasia plates. The volcanic activity is closely related to the tectonic environment. The deep structure characteristics are in...Tengchong volcanic area is located near the impinging and underthrust margin of India and Eurasia plates. The volcanic activity is closely related to the tectonic environment. The deep structure characteristics are inferred from the receiver function inversion with the teleseismic records in the paper. The results show that the low velocity zone is influenced by the NE-trending Dayingjiang fault. The S-wave low velocity structure occurs obviously in the southern part of the fault, but unobviously in its northern part. There are low velocity zones in the shallow po-sition, which coincides with the seismicity. It also demonstrates that the low velocity zone is directly related to the thermal activity in the volcanic area. Therefore, we consider that the volcano may be alive again.展开更多
In this article, we analyze the characters of SV-component receiver function of teleseismic body waves and its advantages in mapping the S-wave velocity structure of crust in detail. Similar to radial receiver functio...In this article, we analyze the characters of SV-component receiver function of teleseismic body waves and its advantages in mapping the S-wave velocity structure of crust in detail. Similar to radial receiver function, SV-component receiver function can be obtained by directly deconvolving the P-component from the SV-component of teleseismic recordings. Our analyses indicate that the change of amplitude of SV-component receiver function against the change of epicentral distance is less than that of radial receiver function. Moreover, the waveform of SV-component receiver function is simpler than the radial receiver function and gives prominence to the PS converted phases that are the most sensitive to the shear wave velocity structure in the inversion. The synthetic tests show that the convergence of SV-component receiver function inversion is faster than that of the radial receiver function inversion. As an example, we investigate the S-wave velocity structure beneath HIA sta-tion by using the SV-component receiver function inversion method.展开更多
A multifractal model is developed to connect the Lagrangian multifractal dimensions with their Eulerian counterparts. We propose that the characteristic time scale of a Lagrangian quantity should be the Lagrangian tim...A multifractal model is developed to connect the Lagrangian multifractal dimensions with their Eulerian counterparts. We propose that the characteristic time scale of a Lagrangian quantity should be the Lagrangian time scale, and it should not be the Eulerian time scale which was widely used in previous studies on Lagrangian statistics. Using the present model, we can obtain the scaling exponents of Lagrangian velocity structure functions from the existing data or models of scaling exponents of Eulerian velocity structure functions. This model is validated by comparing its prediction with the results of experiments, direct numerical simulations, and the previous theoretical models. The comparison shows that the proposed model can better predict the scaling exponents of Lagrangian velocity structure functions, especially for orders larger than 6.展开更多
The Wudalianchi volcano is a modern volcano erupted since the Holocene. Its frequent occurrence of the small earthquake is considered to be indicator of active dormancy volcano. The S wave velocity structure is inferr...The Wudalianchi volcano is a modern volcano erupted since the Holocene. Its frequent occurrence of the small earthquake is considered to be indicator of active dormancy volcano. The S wave velocity structure is inferred from the receiver function for the crust and upper mantle of the Wudalianchi volcano area. The results show that the low velocity structure of S wave is widely distributed underneath the volcano area and part of the low-velocity-zone located at shallow depth in the Wudalianchi volcano area. The low velocity structure is related to the seismicity. The Moho interface is not clear underneath the volcano area, which may be regard to be an nec-essary condition for the lava upwelling. Therefore, we infer that the Wudalianchi volcano has the deep structural condition for the volcano activity and may be alive again.展开更多
We use observations recorded by 23 permanent and 99 temporary stations in the SE Tibetan plateau to obtain the S-wave velocity structure along two profiles by applying joint inversion with receiver functions and surfa...We use observations recorded by 23 permanent and 99 temporary stations in the SE Tibetan plateau to obtain the S-wave velocity structure along two profiles by applying joint inversion with receiver functions and surface waves. The two profiles cross West Yunnan block (WYB), the Central Yunnan sub-block (CYB), South China block (SCB), and Nanpanjiang basin (NPB). The profile at -25°N shows that the Moho interface in the CYB is deeper than those in the WYB and the NPB, and the topography and Moho depth have clear correspondence. Beneath the Xiaojiang fault zone (XJF), there exists a crustal low-velocity zone (LYZ), crossing the XJF and expanding eastward into the SCB. The NPB is shown to be of relatively high velocity. We speculate that the eastward extrusion of the Tibetan plateau may pass through the XJF and affect its eastern region, and is resisted by the rigid NPB, which has high velocity. This may be the main cause of the crustal thickening and uplift of the topography. In the Tengchong volcanic area, the crust is shown to have alternate high- and low-velocity layers, and the upper mantle is shown to be of low velocity. We consider that the magma which exists in the crust is from the upper mantle and that the complex crustal velocity structure is related to magmatic differentiation. Between the Tengchong volcanic area and the XJF, the crustal velocity is relatively high. Combining these observations with other geophysical evi- dence, it is indicated that rock strength is high and defor- mation is weak in this area, which is why the level of seismicity is quite low. The profile at ~ 23~N shows that the variation of the Moho depth is small from the eastern rigid block to the western active block with a wide range of LVZs. We consider that deformation to the south of the SE Tibetan Plateau is weak.展开更多
In this paper,the dispersion curves of the Rayleigh wave and Love wave were extracted from the seismic noise records of 25 broadband stations of the Fujian Seismic Network, and inverted for the lithosphere velocity st...In this paper,the dispersion curves of the Rayleigh wave and Love wave were extracted from the seismic noise records of 25 broadband stations of the Fujian Seismic Network, and inverted for the lithosphere velocity structure. Furthermore,the velocity model was verified by the seismic explosion observations. Our results indicate that the resolution of the lithosphere velocity structure obtained by this method is good in the shallow part,but in the deep part,inversion accuracy for the wave velocity structure is low,which is caused mainly by the small inter-station distance chosen in the paper. Thus the wave dispersion curves have high accuracy in the short-period part,but the warp of the wave dispersion curve in long-period part is large. Considering the results from both the noise inversion and the traditional inversion,we finally present a new velocity model,and the theoretical travel time calculated with the new model matches the explosion travel time very well.展开更多
s Western Yunnan is located at the boundary of collision or underthrusting zone of Eurasian plate and is influenced by many times tectonic movements. With very complex geological environment and tectonic background, i...s Western Yunnan is located at the boundary of collision or underthrusting zone of Eurasian plate and is influenced by many times tectonic movements. With very complex geological environment and tectonic background, it is one of the seismically active areas. In the paper, the teleseismic records were selected from 16 national, local and mo-bile stations, including 4 very-wide-band mobile stations of PASSCAL. And nearly 2 000 receiver functions were extracted. Two measuring lines are 650 km and 450 km, respectively and across some major tectonic units in Western Yunnan. It is indicated that Nujiang might be a seam characterized by underthrusting. The western and eastern boundaries of Sichuan-Yunnan rhombus block, i.e., Honghe and Xiaojiang faults, might be an erection seam or collision belt. Panxi tectonic zone still has the characteristics of continental rift valley, that is, the surface is hollow and the upper mantle is upwarping. The tectonic situation in Western Yunnan is of certain regulation with the interlacing distribution of orogenic zone and seam. The crustal thickness decreases gradually from the north to the south and the S wave velocity is globally lower here.展开更多
It was proved that velocity-dependent infinitesima l symmetry transformations of nonholonomic systems have a characteristic functio nal structure, which could be formulated by means of an auxiliary symmetry tra nsform...It was proved that velocity-dependent infinitesima l symmetry transformations of nonholonomic systems have a characteristic functio nal structure, which could be formulated by means of an auxiliary symmetry tra nsformation function and is manifestly dependent upon constants of motion of th e system. An example was given to illustrate the applicability of the results.展开更多
Twenty broadband seismographs were deployed along Hongyuan, Sichuan to Wuwei, Gansu. 81 teleseismic events were recorded in one year. We computed receiver functions from teleseismic waveform data and obtained S wave v...Twenty broadband seismographs were deployed along Hongyuan, Sichuan to Wuwei, Gansu. 81 teleseismic events were recorded in one year. We computed receiver functions from teleseismic waveform data and obtained S wave velocity structure beneath each station along the profile by using receiver function inversion method. The results revealed that the crustal structure is very complex and crustal average S wave velocity is to be on the low side. Low velocity structure generally exists in the depth range of 10~40 km in the crust between Aba arc fault and northern edge fault of Qinling earth's axis and it is a tectonic feature of complex geological process such as ancient A'nyemaqen Tethys ocean from closing and side colliding to subducted plate exhumed or thrust rock slice lifted. The Moho is about 50 km depth along the profile and is slightly deeper in the south than in the north.展开更多
A shallow crustal velocity structure(above 10 km depth) is essential for understanding the crustal structures and deformation and assessing the exploration prospect of natural resources, and also provides priori infor...A shallow crustal velocity structure(above 10 km depth) is essential for understanding the crustal structures and deformation and assessing the exploration prospect of natural resources, and also provides priori information for imaging deeper crustal and mantle structure. Passive-source seismic methods are cost-effective and advantageous for regional-scale imaging of shallow crustal structures compared to active-source methods. Among these passive methods, techniques utilizing receiver function waveforms and/or body-wave amplitude ratios have recently gained prominence due to their relatively high spatial resolution. However, in basin regions, reverberations caused by near-surface unconsolidated sedimentary layers often introduce strong non-uniqueness and uncertainty, limiting the applicability of such methods. To address these challenges, we propose a two-step inversion method that uses multi-frequency P-RF waveforms and P-RF horizontal-to-vertical amplitude ratios. Synthetic tests indicate that our two-step inversion method can mitigate the non-uniqueness of the inversion and enhance the stability of the results. Applying this method to teleseismic data from a linear seismic array across the sedimentary basins in Northeast China, we obtain a high-resolution image of the shallow crustal S-wave velocity structure along the array. Our results reveal significant differences between the basins and mountains. The identification of low-velocity anomalies(<2.8 km s^(-1)) at depths less than 1.0 km beneath the Erlian Basin and less than 2.5 km beneath the Songliao Basin suggests the existence of sedimentary layers. Moreover, the high-velocity anomalies(~3.4–3.8 km s^(-1)) occurring at depths greater than 7 km in the Songliao Basin may reflect mafic intrusions emplaced during the Early Cretaceous. Velocity anomaly distribution in our imaging result is consistent with the location of the major faults, uplifts, and sedimentary depressions, as well as active-source seismic results. This application further validates the effectiveness of our method in constraining the depth-dependent characteristics of the S-wave velocity in basins with unconsolidated sedimentary cover.展开更多
Since knowledge of the structure and elastic properties of Ta at high pressures is critical for addressing the recent controversies regarding the high-pressure stable phase and elastic properties, we perform a systema...Since knowledge of the structure and elastic properties of Ta at high pressures is critical for addressing the recent controversies regarding the high-pressure stable phase and elastic properties, we perform a systematical study on the highpressure structure and elastic properties of the cubic Ta by using the first-principles method. Results show that the initial body-centered cubic phase of Ta remains stable even up to 500 GPa and the high-pressure elastic properties are excellent/y consistent with the available experimental results. Besides, the high-pressure sound velocities of the single- and polycrystals Ta are also calculated based on the elastic constants, and the predications exhibit good agreement with the existing experimental data.展开更多
As the two largest cratonic basins in China,the Ordos Basin and the Sichuan Basin are of key importance for understanding the evolutionary history of the Chinese continent.In this study,the shear-wave velocity(V_(S))s...As the two largest cratonic basins in China,the Ordos Basin and the Sichuan Basin are of key importance for understanding the evolutionary history of the Chinese continent.In this study,the shear-wave velocity(V_(S))structures of the shallow crust(depth up to 10 km)beneath the two basins are imaged based on the frequency-dependence of direct P-wave amplitudes in receiver functions.The teleseismic data used in the study came from 160 broadband seismic stations,including permanent and temporary stations.The results show that the V_(S) and the thickness of the sediments in the Ordos Basin and the Sichuan Basin are respectively lower and thicker in the west than in the east.In the Ordos Basin,the shallow crustal V_(S) increases gradually from 2.10 km s^(−1)in the northwest to 2.65 km s^(−1)in the southeast and the thickest sediments are 7–8 km in the northwest and 5 km in the east.In the Sichuan Basin,the shallow crustal V_(S) increases from 2.4 km s^(−1) in the west to 2.7 km s^(−1)in the east and the thickness of the sediments decreases from>7 km in the west to 6 km in the east.The east-west difference of the shallow crustal structures of the two basins may have been controlled by the Cenozoic India-Eurasia collision.The western parts of the basins near the collision have a higher deposition rate,while in the parts inside the basins far from the collision,the V_(S) slowly increases with depth,indicating that these areas have experienced a more uniform deposition process.In addition,both basins are characterized by velocity structures that are higher along the edges and lower inside of the basins.The edges of the basins suffered strong denudation due to the uplifting and deformation influenced by tectonic evolution.The downward gradient of the shear-wave velocity beneath the Ordos Basin is twice that of the Sichuan Basin,which may be caused by the different deposition and denudation rates of the two basins resulting from differences in structural evolution and thermal events.In addition,the northern Ordos Basin exhibits a strong structural horizontal stratification,while the southern part shows obvious lateral variations in the V_(S) structure,both of which may have been affected by the Qilian orogenic event,the collision and assembly of the South China and the North China block,and the lateral extrusion of the Tibetan Plateau.展开更多
Heart function and plasma atrial natriuretic peptide (ANP).plasma renin actiity(PRA) andangiotensionⅡ(Ang Ⅱ) were examined with echocardiography and radioimmunoassay in patients with dilated cardiomyopathy(DCM),
S-wave velocity structure beneath the Ailaoshan-Red River fault was obtained from receiver functions by using teleseismic body wave records of broadband digital seismic stations. The average crustal thickness, Vp/Vs r...S-wave velocity structure beneath the Ailaoshan-Red River fault was obtained from receiver functions by using teleseismic body wave records of broadband digital seismic stations. The average crustal thickness, Vp/Vs ratio and Poisson’s ratio were also estimated. The results indicate that the interface of crust and mantle beneath the Ailaoshan-Red River fault is not a sharp velocity discontinuity but a characteristic transition zone. The velocity increases relatively fast at the depth of Moho and then increases slowly in the uppermost mantle. The average crustal thickness across the fault is 36―37 km on the southwest side and 40―42 km on the northeast side, indicating that the fault cuts the crust. The relatively high Poisson’s ratio (0.26―0.28) of the crust implies a high content of mafic materials in the lower crust. Moreover, the lower crust with low velocity could be an ideal position for decoupling between the crust and upper mantle.展开更多
Ordos Block has undergone rapid uplift,and a series of rift basins have been formed around the block since the Cenozoic,but the formation mechanisms remain controversial.A high-resolution 3 D velocity structure of cru...Ordos Block has undergone rapid uplift,and a series of rift basins have been formed around the block since the Cenozoic,but the formation mechanisms remain controversial.A high-resolution 3 D velocity structure of crust and mantle is important for understanding the lithospheric deformation and deep dynamic process.A here we present a 3 D S-wave velocity structure of the crust and upper mantle in the Ordos Block and surrounding regions by joint inversion of receiver functions and surface wave data from a dense broadband seismic deployment.The lithosphere of the Ordos Block exhibits an obvious highvelocity anomaly.In the east and north of the Ordos and the southwestern part of the Tibetan Plateau,obvious low-velocity anomalies are detected in the upper mantle and extend into the Ordos.The lithosphere of the Ordos Block is thick in the center and thin at the edge,while the crust is relatively thin in the center and thick in the southwest and northeast.The crustal thickness of the tensional basin in the north is greater than that in the central Ordos.We suggest that the outward expansion of the mantle thermal materials in eastern Tibet and the upper mantle thermal upwelling in the eastern part of the North China Craton lead to the non-uniform lithospheric thinning,temperature rise and density reduction of the Ordos Block.The additional buoyancy and thermodynamic effects provided by them contributed to the continuous uplift of the Ordos Block since the Cenozoic.Influenced by the extrusion of Tibetan Plateau,the crustal thickening and rapid uplift occur in the southwestern and northern parts of the Ordos Block.The lithospheric structures of the Alxa and Ordos Blocks are different,and they may belong to different independent blocks before the Mesozoic.展开更多
基金supported by National Key Project of Scientific and Technical Supporting Programs Funded by Ministry of Science & Technology of China (2006BAC01B04)Joint Seismological Science Foundation of China (106023)Contribution No. is 09FE3006 of Institute of Geophysics,China Earthquake Administration
文摘The S wave velocity structure in Changbaishan volcanic region was obtained from teleseismic receiver function modeling. The results show that there exist distinct low velocity layers in crust in volcano area. Beneath WQD station near to the Tianchi caldera the low velocity layer at 8 km depth is 20 km thick with the lowest S-wave velocity about 2.2 km/s At EDO station located 50 km north of Tianchi caldera, no obvious crustal low velocity layer is detected. In the volcanic region, the thickness of crustal low velocity layer is greater and the lowest velocity is more obvious with the distance shorter to the caldera. It indicates the existence of the high temperature material or magma reservoir in crust near the Tianchi caldera. The receiver functions and inversion result from different back azimuths at CBS permanent seismic station show that the thickness of near surface low velocity layer and Moho depth change with directions. The near surface low velocity layer is obviously thicker in south direction. The Moho depth shows slight uplifting in the direction of the caldera located. We con- sider that the special near surface velocity structure is the main cause of relatively lower prominent frequency of volcanic earthquake waveforms recorded by CBS station. The slight uplifting of Moho beneath Tianchi caldera indicates there is a material exchanging channel between upper mantle and magma reservoir in crust.
文摘The time sequence of longitudinal velocity component at different vertical locations in turbulent boundary layer was finely measured in a wind tunnel. The concept of coarse_grained velocity structure functions, which describes the relative motions of straining and compressing for multi_scale eddy structures in turbulent flows, was put forward based on the theory of locally multi_scale average. Based on the consistency between coarse_grained velocity structure function and Harr wavelet transformation,detecting method was presented, by which the coherent structures and their intermittency was identified by multi_scale flatness factor calculated by locally average structure function. Phase_averaged evolution course for multi_scale coherent eddy structures in wall turbulence were extracted by this conditional sampling to educe scheme. The dynamics course of multi_scale coherent eddy structures and their effects on statistics of turbulent flows were studied.
文摘Tengchong volcanic area is located near the impinging and underthrust margin of India and Eurasia plates. The volcanic activity is closely related to the tectonic environment. The deep structure characteristics are inferred from the receiver function inversion with the teleseismic records in the paper. The results show that the low velocity zone is influenced by the NE-trending Dayingjiang fault. The S-wave low velocity structure occurs obviously in the southern part of the fault, but unobviously in its northern part. There are low velocity zones in the shallow po-sition, which coincides with the seismicity. It also demonstrates that the low velocity zone is directly related to the thermal activity in the volcanic area. Therefore, we consider that the volcano may be alive again.
基金State Key Basic Research Development and Programming Project (G199804070201) State Natural Science Foundation (40074008).
文摘In this article, we analyze the characters of SV-component receiver function of teleseismic body waves and its advantages in mapping the S-wave velocity structure of crust in detail. Similar to radial receiver function, SV-component receiver function can be obtained by directly deconvolving the P-component from the SV-component of teleseismic recordings. Our analyses indicate that the change of amplitude of SV-component receiver function against the change of epicentral distance is less than that of radial receiver function. Moreover, the waveform of SV-component receiver function is simpler than the radial receiver function and gives prominence to the PS converted phases that are the most sensitive to the shear wave velocity structure in the inversion. The synthetic tests show that the convergence of SV-component receiver function inversion is faster than that of the radial receiver function inversion. As an example, we investigate the S-wave velocity structure beneath HIA sta-tion by using the SV-component receiver function inversion method.
基金supported by the National Natural Science Foundation of China(11072247,11021262,and 11232011)National Natural Science Associate Foundation of China(NSAF)(U1230126)973 program of China(2013CB834100)
文摘A multifractal model is developed to connect the Lagrangian multifractal dimensions with their Eulerian counterparts. We propose that the characteristic time scale of a Lagrangian quantity should be the Lagrangian time scale, and it should not be the Eulerian time scale which was widely used in previous studies on Lagrangian statistics. Using the present model, we can obtain the scaling exponents of Lagrangian velocity structure functions from the existing data or models of scaling exponents of Eulerian velocity structure functions. This model is validated by comparing its prediction with the results of experiments, direct numerical simulations, and the previous theoretical models. The comparison shows that the proposed model can better predict the scaling exponents of Lagrangian velocity structure functions, especially for orders larger than 6.
文摘The Wudalianchi volcano is a modern volcano erupted since the Holocene. Its frequent occurrence of the small earthquake is considered to be indicator of active dormancy volcano. The S wave velocity structure is inferred from the receiver function for the crust and upper mantle of the Wudalianchi volcano area. The results show that the low velocity structure of S wave is widely distributed underneath the volcano area and part of the low-velocity-zone located at shallow depth in the Wudalianchi volcano area. The low velocity structure is related to the seismicity. The Moho interface is not clear underneath the volcano area, which may be regard to be an nec-essary condition for the lava upwelling. Therefore, we infer that the Wudalianchi volcano has the deep structural condition for the volcano activity and may be alive again.
基金supported by a National Natural Science Foundation of China (Grant No. 41374097)China National Special Fund for Earthquake Scientific Research in Public Interest (Grant No. 201008001)
文摘We use observations recorded by 23 permanent and 99 temporary stations in the SE Tibetan plateau to obtain the S-wave velocity structure along two profiles by applying joint inversion with receiver functions and surface waves. The two profiles cross West Yunnan block (WYB), the Central Yunnan sub-block (CYB), South China block (SCB), and Nanpanjiang basin (NPB). The profile at -25°N shows that the Moho interface in the CYB is deeper than those in the WYB and the NPB, and the topography and Moho depth have clear correspondence. Beneath the Xiaojiang fault zone (XJF), there exists a crustal low-velocity zone (LYZ), crossing the XJF and expanding eastward into the SCB. The NPB is shown to be of relatively high velocity. We speculate that the eastward extrusion of the Tibetan plateau may pass through the XJF and affect its eastern region, and is resisted by the rigid NPB, which has high velocity. This may be the main cause of the crustal thickening and uplift of the topography. In the Tengchong volcanic area, the crust is shown to have alternate high- and low-velocity layers, and the upper mantle is shown to be of low velocity. We consider that the magma which exists in the crust is from the upper mantle and that the complex crustal velocity structure is related to magmatic differentiation. Between the Tengchong volcanic area and the XJF, the crustal velocity is relatively high. Combining these observations with other geophysical evi- dence, it is indicated that rock strength is high and defor- mation is weak in this area, which is why the level of seismicity is quite low. The profile at ~ 23~N shows that the variation of the Moho depth is small from the eastern rigid block to the western active block with a wide range of LVZs. We consider that deformation to the south of the SE Tibetan Plateau is weak.
基金supported by Special R&D Fund of Seismological Industry (200808067)Spark Program of Earthquake Science (XH1016Y),China
文摘In this paper,the dispersion curves of the Rayleigh wave and Love wave were extracted from the seismic noise records of 25 broadband stations of the Fujian Seismic Network, and inverted for the lithosphere velocity structure. Furthermore,the velocity model was verified by the seismic explosion observations. Our results indicate that the resolution of the lithosphere velocity structure obtained by this method is good in the shallow part,but in the deep part,inversion accuracy for the wave velocity structure is low,which is caused mainly by the small inter-station distance chosen in the paper. Thus the wave dispersion curves have high accuracy in the short-period part,but the warp of the wave dispersion curve in long-period part is large. Considering the results from both the noise inversion and the traditional inversion,we finally present a new velocity model,and the theoretical travel time calculated with the new model matches the explosion travel time very well.
文摘s Western Yunnan is located at the boundary of collision or underthrusting zone of Eurasian plate and is influenced by many times tectonic movements. With very complex geological environment and tectonic background, it is one of the seismically active areas. In the paper, the teleseismic records were selected from 16 national, local and mo-bile stations, including 4 very-wide-band mobile stations of PASSCAL. And nearly 2 000 receiver functions were extracted. Two measuring lines are 650 km and 450 km, respectively and across some major tectonic units in Western Yunnan. It is indicated that Nujiang might be a seam characterized by underthrusting. The western and eastern boundaries of Sichuan-Yunnan rhombus block, i.e., Honghe and Xiaojiang faults, might be an erection seam or collision belt. Panxi tectonic zone still has the characteristics of continental rift valley, that is, the surface is hollow and the upper mantle is upwarping. The tectonic situation in Western Yunnan is of certain regulation with the interlacing distribution of orogenic zone and seam. The crustal thickness decreases gradually from the north to the south and the S wave velocity is globally lower here.
文摘It was proved that velocity-dependent infinitesima l symmetry transformations of nonholonomic systems have a characteristic functio nal structure, which could be formulated by means of an auxiliary symmetry tra nsformation function and is manifestly dependent upon constants of motion of th e system. An example was given to illustrate the applicability of the results.
基金Foundation item: National Natural Science Foundation of China (40334040 and 40474049).
文摘Twenty broadband seismographs were deployed along Hongyuan, Sichuan to Wuwei, Gansu. 81 teleseismic events were recorded in one year. We computed receiver functions from teleseismic waveform data and obtained S wave velocity structure beneath each station along the profile by using receiver function inversion method. The results revealed that the crustal structure is very complex and crustal average S wave velocity is to be on the low side. Low velocity structure generally exists in the depth range of 10~40 km in the crust between Aba arc fault and northern edge fault of Qinling earth's axis and it is a tectonic feature of complex geological process such as ancient A'nyemaqen Tethys ocean from closing and side colliding to subducted plate exhumed or thrust rock slice lifted. The Moho is about 50 km depth along the profile and is slightly deeper in the south than in the north.
基金supported by the National Natural Science Foundation of China(Grant Nos.42004041,42288201,and 91958209)。
文摘A shallow crustal velocity structure(above 10 km depth) is essential for understanding the crustal structures and deformation and assessing the exploration prospect of natural resources, and also provides priori information for imaging deeper crustal and mantle structure. Passive-source seismic methods are cost-effective and advantageous for regional-scale imaging of shallow crustal structures compared to active-source methods. Among these passive methods, techniques utilizing receiver function waveforms and/or body-wave amplitude ratios have recently gained prominence due to their relatively high spatial resolution. However, in basin regions, reverberations caused by near-surface unconsolidated sedimentary layers often introduce strong non-uniqueness and uncertainty, limiting the applicability of such methods. To address these challenges, we propose a two-step inversion method that uses multi-frequency P-RF waveforms and P-RF horizontal-to-vertical amplitude ratios. Synthetic tests indicate that our two-step inversion method can mitigate the non-uniqueness of the inversion and enhance the stability of the results. Applying this method to teleseismic data from a linear seismic array across the sedimentary basins in Northeast China, we obtain a high-resolution image of the shallow crustal S-wave velocity structure along the array. Our results reveal significant differences between the basins and mountains. The identification of low-velocity anomalies(<2.8 km s^(-1)) at depths less than 1.0 km beneath the Erlian Basin and less than 2.5 km beneath the Songliao Basin suggests the existence of sedimentary layers. Moreover, the high-velocity anomalies(~3.4–3.8 km s^(-1)) occurring at depths greater than 7 km in the Songliao Basin may reflect mafic intrusions emplaced during the Early Cretaceous. Velocity anomaly distribution in our imaging result is consistent with the location of the major faults, uplifts, and sedimentary depressions, as well as active-source seismic results. This application further validates the effectiveness of our method in constraining the depth-dependent characteristics of the S-wave velocity in basins with unconsolidated sedimentary cover.
基金Project supported by the Basic and Frontier Technical Research Project of Henan Province,China(Grant No.152300410228)the University Innovation Team Project in Henan Province,China(Grant No.15IRTSTHN004)the Key Scientific Research Project of Higher Education of Henan Province,China(Grant No.17A140014)
文摘Since knowledge of the structure and elastic properties of Ta at high pressures is critical for addressing the recent controversies regarding the high-pressure stable phase and elastic properties, we perform a systematical study on the highpressure structure and elastic properties of the cubic Ta by using the first-principles method. Results show that the initial body-centered cubic phase of Ta remains stable even up to 500 GPa and the high-pressure elastic properties are excellent/y consistent with the available experimental results. Besides, the high-pressure sound velocities of the single- and polycrystals Ta are also calculated based on the elastic constants, and the predications exhibit good agreement with the existing experimental data.
基金supported by the National Natural Science Foundation of China (Grant Nos. 41688103 and 42004041)
文摘As the two largest cratonic basins in China,the Ordos Basin and the Sichuan Basin are of key importance for understanding the evolutionary history of the Chinese continent.In this study,the shear-wave velocity(V_(S))structures of the shallow crust(depth up to 10 km)beneath the two basins are imaged based on the frequency-dependence of direct P-wave amplitudes in receiver functions.The teleseismic data used in the study came from 160 broadband seismic stations,including permanent and temporary stations.The results show that the V_(S) and the thickness of the sediments in the Ordos Basin and the Sichuan Basin are respectively lower and thicker in the west than in the east.In the Ordos Basin,the shallow crustal V_(S) increases gradually from 2.10 km s^(−1)in the northwest to 2.65 km s^(−1)in the southeast and the thickest sediments are 7–8 km in the northwest and 5 km in the east.In the Sichuan Basin,the shallow crustal V_(S) increases from 2.4 km s^(−1) in the west to 2.7 km s^(−1)in the east and the thickness of the sediments decreases from>7 km in the west to 6 km in the east.The east-west difference of the shallow crustal structures of the two basins may have been controlled by the Cenozoic India-Eurasia collision.The western parts of the basins near the collision have a higher deposition rate,while in the parts inside the basins far from the collision,the V_(S) slowly increases with depth,indicating that these areas have experienced a more uniform deposition process.In addition,both basins are characterized by velocity structures that are higher along the edges and lower inside of the basins.The edges of the basins suffered strong denudation due to the uplifting and deformation influenced by tectonic evolution.The downward gradient of the shear-wave velocity beneath the Ordos Basin is twice that of the Sichuan Basin,which may be caused by the different deposition and denudation rates of the two basins resulting from differences in structural evolution and thermal events.In addition,the northern Ordos Basin exhibits a strong structural horizontal stratification,while the southern part shows obvious lateral variations in the V_(S) structure,both of which may have been affected by the Qilian orogenic event,the collision and assembly of the South China and the North China block,and the lateral extrusion of the Tibetan Plateau.
文摘Heart function and plasma atrial natriuretic peptide (ANP).plasma renin actiity(PRA) andangiotensionⅡ(Ang Ⅱ) were examined with echocardiography and radioimmunoassay in patients with dilated cardiomyopathy(DCM),
基金This work was supported by the National Natural Science Foundation of China (Grant No. 40034010).
文摘S-wave velocity structure beneath the Ailaoshan-Red River fault was obtained from receiver functions by using teleseismic body wave records of broadband digital seismic stations. The average crustal thickness, Vp/Vs ratio and Poisson’s ratio were also estimated. The results indicate that the interface of crust and mantle beneath the Ailaoshan-Red River fault is not a sharp velocity discontinuity but a characteristic transition zone. The velocity increases relatively fast at the depth of Moho and then increases slowly in the uppermost mantle. The average crustal thickness across the fault is 36―37 km on the southwest side and 40―42 km on the northeast side, indicating that the fault cuts the crust. The relatively high Poisson’s ratio (0.26―0.28) of the crust implies a high content of mafic materials in the lower crust. Moreover, the lower crust with low velocity could be an ideal position for decoupling between the crust and upper mantle.
基金supported by the National Natural Science Foundation of China(Grant Nos.41774102,41804062 and 41804057)the Special Funds for Basic Scientific Research Business Fees of Institute of Geophysics,China Earthquake Administration(Grant Nos.DQJB20K41,DQJB16A03)。
文摘Ordos Block has undergone rapid uplift,and a series of rift basins have been formed around the block since the Cenozoic,but the formation mechanisms remain controversial.A high-resolution 3 D velocity structure of crust and mantle is important for understanding the lithospheric deformation and deep dynamic process.A here we present a 3 D S-wave velocity structure of the crust and upper mantle in the Ordos Block and surrounding regions by joint inversion of receiver functions and surface wave data from a dense broadband seismic deployment.The lithosphere of the Ordos Block exhibits an obvious highvelocity anomaly.In the east and north of the Ordos and the southwestern part of the Tibetan Plateau,obvious low-velocity anomalies are detected in the upper mantle and extend into the Ordos.The lithosphere of the Ordos Block is thick in the center and thin at the edge,while the crust is relatively thin in the center and thick in the southwest and northeast.The crustal thickness of the tensional basin in the north is greater than that in the central Ordos.We suggest that the outward expansion of the mantle thermal materials in eastern Tibet and the upper mantle thermal upwelling in the eastern part of the North China Craton lead to the non-uniform lithospheric thinning,temperature rise and density reduction of the Ordos Block.The additional buoyancy and thermodynamic effects provided by them contributed to the continuous uplift of the Ordos Block since the Cenozoic.Influenced by the extrusion of Tibetan Plateau,the crustal thickening and rapid uplift occur in the southwestern and northern parts of the Ordos Block.The lithospheric structures of the Alxa and Ordos Blocks are different,and they may belong to different independent blocks before the Mesozoic.