期刊文献+
共找到20,684篇文章
< 1 2 250 >
每页显示 20 50 100
Theoretical Analysis on Deflection and Bearing Capacity of Prestressed Bamboo-Steel Composite Beams
1
作者 Qifeng Shan Ming Mao Yushun Li 《Journal of Renewable Materials》 EI CAS 2024年第1期149-166,共18页
A theoretical analysis of upward deflection and midspan deflection of prestressed bamboo-steel composite beams is presented in this study.The deflection analysis considers the influences of interface slippage and shea... A theoretical analysis of upward deflection and midspan deflection of prestressed bamboo-steel composite beams is presented in this study.The deflection analysis considers the influences of interface slippage and shear deformation.Furthermore,the calculation model for flexural capacity is proposed considering the two stages of loading.The theoretical results are verified with 8 specimens considering different prestressed load levels,load schemes,and prestress schemes.The results indicate that the proposed theoretical analysis provides a feasible prediction of the deflection and bearing capacity of bamboo-steel composite beams.For deflection analysis,the method considering the slippage and shear deformation provides better accuracy.The theoretical method for bearing capacity matches well with the test results,and the relative errors in the serviceability limit state and ultimate limit state are 4.95%and 5.85%,respectively,which meet the accuracy requirements of the engineered application. 展开更多
关键词 Bamboo scrimber composite beam PRESTRESS DEFLECTION bearing capacity
下载PDF
Bearing capacity of circular footings on multi-layered sand-waste tire shreds reinforced with geogrids
2
作者 Mahmoud Ghazavi Ehsan Khosroshahi 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第3期1085-1094,共10页
The presence of waste tires poses an environmental challenge as they occupy a significant amount of land and are expensive to dispose in landfills.However,reusing waste tires can address this issue when waste tires ar... The presence of waste tires poses an environmental challenge as they occupy a significant amount of land and are expensive to dispose in landfills.However,reusing waste tires can address this issue when waste tires are used in geotechnical applications.To determine the viability of this approach,laboratoryscale tests were conducted to investigate load-bearing capacity of circular footings on sand-tire shred(STS)mixtures with shredded waste tire contents of 5%e15%by weight and three different widths of shreds.The investigation focused on analyzing the thickness of layers composed of STS mixtures,the soil cap,and the impact of geogrids on bearing capacity.The results indicate that a specific mixture of sand and tire shreds provides the highest footing-bearing capacity.In addition,the optimal shred content and size were found to be 10%by weight and 2 cm×10 cm,respectively.Furthermore,for a given tire shred width,a particular length provides the largest bearing capacity.The results agree well with that of previous research conducted by the first author and his colleagues in direct shear and California bearing ratio(CBR)tests.The primary finding of this research is that the use of two-layered STS mixtures reinforced by geogrids significantly enhances the bearing capacity. 展开更多
关键词 GEOGRID SAND Waste tire shred bearing capacity Waste tire shred optimization Tire shred aspect ratio
下载PDF
Developing a novel big dataset and a deep neural network to predict the bearing capacity of a ring footing
3
作者 Ramin Vali Esmaeil Alinezhad +3 位作者 Mohammad Fallahi Majid Beygi Mohammad Saberian Jie Li 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第11期4798-4813,共16页
The accurate prediction of the bearing capacity of ring footings,which is crucial for civil engineering projects,has historically posed significant challenges.Previous research in this area has been constrained by con... The accurate prediction of the bearing capacity of ring footings,which is crucial for civil engineering projects,has historically posed significant challenges.Previous research in this area has been constrained by considering only a limited number of parameters or utilizing relatively small datasets.To overcome these limitations,a comprehensive finite element limit analysis(FELA)was conducted to predict the bearing capacity of ring footings.The study considered a range of effective parameters,including clay undrained shear strength,heterogeneity factor of clay,soil friction angle of the sand layer,radius ratio of the ring footing,sand layer thickness,and the interface between the ring footing and the soil.An extensive dataset comprising 80,000 samples was assembled,exceeding the limitations of previous research.The availability of this dataset enabled more robust and statistically significant analyses and predictions of ring footing bearing capacity.In light of the time-intensive nature of gathering a substantial dataset,a customized deep neural network(DNN)was developed specifically to predict the bearing capacity of the dataset rapidly.Both computational and comparative results indicate that the proposed DNN(i.e.DNN-4)can accurately predict the bearing capacity of a soil with an R2 value greater than 0.99 and a mean squared error(MSE)below 0.009 in a fraction of 1 s,reflecting the effectiveness and efficiency of the proposed method. 展开更多
关键词 bearing capacity Ring footing Finite element limit analysis(FELA) BC-RF dataset Deep neural network(DNN)
下载PDF
Bearing Capacity Analysis of Spread Footing on Massif in the “Corniche Ouest” of the Dakar Peninsula (Senegal, West Africa)
4
作者 Moussa Sawadogo Déthie Sarr Oustasse A. Sall 《Open Journal of Civil Engineering》 2024年第3期421-434,共14页
This study presents various approaches to calculating the bearing capacity of spread footings applied to the rock mass of the western corniche at the tip of the Dakar peninsula. The bearing capacity was estimated usin... This study presents various approaches to calculating the bearing capacity of spread footings applied to the rock mass of the western corniche at the tip of the Dakar peninsula. The bearing capacity was estimated using empirical, analytical and numerical approaches based on the parameters of the rock mass and the foundation. Laboratory tests were carried out on basanite, as well as on the other facies detected. The results of these studies give a range of allowable bearing capacity values varying between 1.92 and 11.39 MPa for the empirical methods and from 7.13 to 25.50 MPa for the analytical methods. A wide dispersion of results was observed according to the different approaches. This dispersion of results is explained by the use of different rock parameters depending on the method used. The allowable bearing capacity results obtained with varying approaches of calculation remain admissible to support the loads. On the other hand, the foundation calculations show acceptable settlement of the order of a millimeter for all the layers, especially in the thin clay layers resting on the bedrock at shallow depths, where the rigidity of the rock reduces settlement. 展开更多
关键词 Peninsula of Dakar bearing capacity Basanites Rock Mass Spread Footings
下载PDF
An Rapid Assessment Method for Bearing Capacity of RC Girder Bridges Based on Residual Strain
5
作者 Ming Zhong 《Open Journal of Civil Engineering》 2024年第2期225-239,共15页
In order to realize the in-situ evaluation of reinforced concrete bridges subjected to fatigue for a long time or after earthquake, an evaluation method for cumulative damage of concrete structures based on unloading ... In order to realize the in-situ evaluation of reinforced concrete bridges subjected to fatigue for a long time or after earthquake, an evaluation method for cumulative damage of concrete structures based on unloading elastic modulus was proposed. First, according to the concrete stress-strain curve and the statistical relationship between residual strain and cumulative strain, the calculation method of static equivalent strain and residual strain concrete based on unloading elastic modulus and the method for estimating the strength of concrete after damage were proposed. The detailed steps of field test and analysis and the practical damage indicators of residual strain were given. Then, the evaluation method of existing stress and strain of Reinforced Concrete Bridge under dead load and the concept of “equivalent dead load bending moment” were put forward. On this basis, the paper analyzed the root cause of the decrease of bearing capacity of Reinforced Concrete Bridge after fatigue damage, and pointed out that the equivalent strain or residual strain of reinforced concrete increases under the fatigue effect, which led to the decreasing of actual live moment and deformation performance while the ultimate load-carrying capacity remained constant or very little decrease. The evaluation method of structure residual capacity was given, and through comparative analysis of eight T reinforced concrete beams that had been in service for 35 years with the static failure tests, the effectiveness of the method was verified. 展开更多
关键词 Bridge Engineering Reinforced Concrete Fatigue Damage Unloading Elastic Modulus Residual Strain Residual bearing capacity
下载PDF
Analysis of Bridge-Bearing Capacity Detection and Evaluation Technology
6
作者 Wei Fu Bo Liu 《Journal of World Architecture》 2024年第2期129-133,共5页
A bridge project is taken as an example to analyze the application of bearing capacity detection and evaluation.This article provides a basic overview of the project,the application of bearing capacity detection techn... A bridge project is taken as an example to analyze the application of bearing capacity detection and evaluation.This article provides a basic overview of the project,the application of bearing capacity detection technology,and the bearing capacity assessment analysis.It is hoped that this analysis can provide a scientific reference for the load-bearing capacity detection and evaluation work in bridge engineering projects,thereby achieving a scientific assessment of the overall load-bearing capacity of the bridge engineering structure. 展开更多
关键词 Bridge engineering structure bearing capacity Calculation model Detection points Quantitative standards
下载PDF
Analysis of the Application of Static Load Test in Bridge Bearing Capacity Testing
7
作者 Wei Fu Bo Liu 《Journal of Architectural Research and Development》 2024年第3期36-41,共6页
This article uses real engineering projects as examples to analyze how static load test technology is applied in testing the bridge-bearing capacity.The analysis covers aspects such as testing section layout,test load... This article uses real engineering projects as examples to analyze how static load test technology is applied in testing the bridge-bearing capacity.The analysis covers aspects such as testing section layout,test load and efficiency coefficient,loading plan,evaluation optimization,test result modification,and result evaluation.The aim is to support the accurate detection and evaluation of bridge-bearing capacity. 展开更多
关键词 Bridge engineering bearing capacity Static load test Loading plan Test evaluation
下载PDF
METHOD FOR BRIDGE BEARING CAPACITY ASSESSMENT BASED ON ANALYTIC HIERARCHY PROCESS 被引量:2
8
作者 张丽芳 艾军 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2009年第3期235-241,共7页
By analyzing the existing methods for the bridge bearing capacity assessment, an analytic hierarchy pro cess estimation model with a variable weight and fuzzy description is proposed based on the nondestructive infor ... By analyzing the existing methods for the bridge bearing capacity assessment, an analytic hierarchy pro cess estimation model with a variable weight and fuzzy description is proposed based on the nondestructive infor mation. Considering the actual strength, the bearing capacity is first calculated from its design state, and then modified based on the detection information. The modification includes the section reduction and the structure deterioration. The section reduction involves the concrete section and the steel cross-section reduction. The structure deterioration is decided by six factors, i.e. , the concrete surface damage, the actual concrete strength, the steel corrosion electric potential, the chloride ion content, the carbonization depth, and the protective layer depth. The initial weight of each factor is calculated by the expert judgment matrix using an analytic hierarchy process. The consistency approximation and the error transfer theory are used. Then, the variable weight is in- troduced to expand the influences of factors in the worse state. Finally, an actual bridge is taken as an example to verify the proposed method. Results show that the estimated capacity agrees well with that of the load test, thus the method is objective and credible 展开更多
关键词 BRIDGES bearing capacity fuzzy rules variable weight analytic hierarchy process
下载PDF
Changes of Productivity and Bearing Capacity of Grassland in Arid Zone of Central Ningxia over 20 Years 被引量:1
9
作者 兰剑 沈艳 《Agricultural Science & Technology》 CAS 2011年第4期600-602,607,共4页
[Objective] The paper was to explore the vegetation regressive succession law in arid zone of central Ningxia.[Method] Based on the survey data during 1982-2001,the grass type vegetation characteristics,grassland prod... [Objective] The paper was to explore the vegetation regressive succession law in arid zone of central Ningxia.[Method] Based on the survey data during 1982-2001,the grass type vegetation characteristics,grassland productivity and the quality of grass in 7 survey sites were analyzed.[Result] The grass type in arid zone of central Ningxia had changed or was changing in the last 20 years;the dominant species within communities were also replacing by other species,vegetation coverage and number of plant species within communities were continuously declined,the bearing capacity of grassland had averagely declined by 114%,and the quality of grassland seriously declined.[Conclusion] The study provided basic data for the sustainable use of typical grassland. 展开更多
关键词 GRASSLAND DEGRADATION Vegetation succession bearing capacity
下载PDF
Influence of Incomplete Soil Plugs on Bearing Capacities of Bucket Foundations in Clay
10
作者 LI Hui-shan LIU Run +1 位作者 YANG Xu LIAN Ji-jian 《China Ocean Engineering》 SCIE EI CSCD 2024年第1期144-155,共12页
Due to the uneven seabed and heaving of soil during pumping,incomplete soil plugs may occur during the installation of bucket foundations,and the impacts on the bearing capacities of bucket foundations need to be eval... Due to the uneven seabed and heaving of soil during pumping,incomplete soil plugs may occur during the installation of bucket foundations,and the impacts on the bearing capacities of bucket foundations need to be evaluated.In this paper,the contact ratio(the ratio of the top diameter of the soil plug to the diameter of the bucket)and the soil plug ratio(the ratio of the soil heave height to the skirt height)are defined to describe the shape and size of the incomplete soil plug.Then,finite element models are established to investigate the bearing capacities of bucket foundations with incomplete soil plugs and the influences of the contact ratios,and the soil plug ratios on the bearing capacities are analyzed.The results show that the vertical bearing capacity of bucket foundations in homogeneous soil continuously improves with the increase of the contact ratio.However,in normally consolidated soil,the vertical bearing capacity barely changes when the contact ratio is smaller than 0.75,while the bearing capacity suddenly increases when the contact ratio increases to 1 due to the change of failure mode.The contact ratio hardly affects the horizontal bearing capacity of bucket foundations.Moreover,the moment bearing capacity improves with the increase of the contact ratio for small aspect ratios,but hardly varies with increasing contact ratio for aspect ratios larger than 0.5.Consequently,the reduction coefficient method is proposed based on this analysis to calculate the bearing capacities of bucket foundations considering the influence of incomplete soil plugs.The comparison results show that the proposed reduction coefficient method can be used to evaluate the influences of incomplete soil plug on the bearing capacities of bucket foundations. 展开更多
关键词 bucket foundation incomplete soil plug uniaxial bearing capacity contact ratio soil plug ratio
下载PDF
Estimation of Undrained Bearing Capacity for Offshore Soft Foundations with Cyclic Load 被引量:18
11
作者 Wang, JH Liu, YF +1 位作者 Xing, Y Di, HM 《China Ocean Engineering》 SCIE EI 1998年第2期213-222,共10页
The degradation strength of soils under cyclic loading is studied and a method for determining the cyclic degradation strength with cyclic triaxial tests is given in the paper. Furthermore, a dum my static method for ... The degradation strength of soils under cyclic loading is studied and a method for determining the cyclic degradation strength with cyclic triaxial tests is given in the paper. Furthermore, a dum my static method for estimating the undrained bearing capacity for offshore soft foundation under wave loads is developed. It can consider the effect of the difference of cyclic stress for different parts of the foundation on both the degradation strength of the foundation soil and the bearing capacity so that the estimated result can better reflect the real condition of foundation under cyclic loading. The method can be applied to plane and space problem. 展开更多
关键词 offshore engineering soft foundation soil dynamics bearing capacity cyclic load
下载PDF
Load Bearing Capacity and Safety Analysis for Strain-hardening Austenitic Stainless Steel Pressure Vessels 被引量:7
12
作者 CHEN Gang DENG Yangchun 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2011年第2期179-186,共8页
By increasing the yield strengths of austenitic stainless steels for pressure vessels with strain hardening techniques,the elastic load bearing capacity of austenitic stainless steel pressure vessels can be significan... By increasing the yield strengths of austenitic stainless steels for pressure vessels with strain hardening techniques,the elastic load bearing capacity of austenitic stainless steel pressure vessels can be significantly improved.Two kinds of strain hardening methods are often used for austenitic stainless steel pressure vessels:Avesta model for ambient temperature applications and Ardeform model for cryogenic temperature applications.Both methods are obtained from conventional design rules based on the linear elastic theory,and only consider the hardening effect from materials.Consequently this limits the applications of strain hardening techniques for austenitic stainless steel pressure vessels because of safety concerns.This paper investigates the effect of strain hardening on the load bearing capacity of austenitic stainless steel pressure vessels under large deformation,based on the elastic-plastic theory.Firstly,to understand the effect of strain hardening on material behavior,the plastic instability loads of a round tensile bar specimen are derived under two different loading paths and validated by experiments.Secondly,to investigate the effect of strain hardening on pressure vessels strength, the plastic instability pressure under strain hardening is derived and further validated by finite element simulations.Further,the safety margin of pressure vessels after strain hardening is analyzed by comparing the safety factor values calculated from bursting tests,finite element analyses,and standards.The researching results show that the load bearing capacity of pressure vessels at ambient temperature is independent of the loading history when the effects of both material strain hardening and structural deformation are considered.Finite element simulations and bursting tests results show that the minimum safety factor of austenitic stainless steel pressure vessels with 5% strain hardening is close to the recommended value for common pressure vessels specified in the European pressure vessel standard.The proposed study also shows that in the strain hardening design of austenitic stainless steel pressure vessels,the calculation for plastic instability pressure could use theoretical formula or finite element analyses based on geometrical dimensions and material property parameters before strain hardening,but a 5%strain should be employed as a design limit.The proposed research can be used for the strain hardening design of austenitic stainless steel pressure vessels safely. 展开更多
关键词 pressure vessel austenitic stainless steel strain hardening load bearing capacity safety margin
下载PDF
Oil Pocket's Bearing Capacity Analysis of Liquid Hydrostatic Worktable in Gantry Moving Milling Center 被引量:7
13
作者 ZHAO Jianhua LIANG Yingna GAO Dianrong 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2014年第5期1008-1017,共10页
Durning the design process of hydrostatic rotary worktable,the processing and assembly tolerance,(the offset of worktable and the gap of the oil film’s thickness)is ignored.But it will cause that the real bearing o... Durning the design process of hydrostatic rotary worktable,the processing and assembly tolerance,(the offset of worktable and the gap of the oil film’s thickness)is ignored.But it will cause that the real bearing of oil pocket deviates from the initial design value,and then the performance of rotary worktable will be reduced significantly.Up to now,no effort is found toward the research of influence of the processing and assembly tolerance on the performance of the rotary worktable.So the hydrostatic oil film is assumed as the elastomer in this paper,and then the bearing capacity of the oil pocket is studied with and without the mass offset of the worktable by taking an expression between the bearing capacity and the oil film’s thickness of the oil pocket as the deform compatibility equation.The influence of the processing tolerance of the oil sealing belt’s gap on the bearing capacity of the oil pocket is analyzed.In the light of the liquid hydrostatic worktable of Gantry Moving Milling Center using on the scene,the oil pocket’s pressure of the worktable is tested using Rotary Worktable Test System under the circumstance of the mass offset of the worktable and the gap tolerance of the oil sealing belt,and then the equivalent offset of worktable,the average pressure of the oil pocket and the actual thickness of the oil film are analyzed respectively.The test results show that the bearing capacity component of the oil pocket caused by G is consistent,and the component caused by M is relative to the position of the oil pocket.When the oil sealing belt’s gap is larger than the theoretical value,the bearing capacity of the oil pocket is smaller than the others;whereas the bearing capacity of the oil pocket is larger than the others.The maximum and minimum equivalent offsets are 0.256 4 mm and 0.047 5 mm,respectively,and the average oil pocket pressure varies from 0.345 MPa to 0.460 MPa,the maximum and minimum value of the actual oil film thickness are 109.976?m(No.7 oil pocket)and 93.467?m(No.10 oil pocket),respectively.The research results can be used to detect the offset of the worktable and the actual thickness of the oil film under processing and assembly tolerance,and provides a basis way for detecting the processing and assembly tolerance of rotary worktable signing reasonably of Gantry Moving Milling Center. 展开更多
关键词 Gantry Moving Milling Center bearing capacity processing and assembly tolerance mass offset
下载PDF
H-M Bearing Capacity of A Modified Suction Caisson Determined by Using Load-/Displacement-Controlled Methods 被引量:11
14
作者 张雨坤 高玉峰 +1 位作者 李大勇 Ali H.Mahfouz 《China Ocean Engineering》 SCIE EI CSCD 2016年第6期926-941,共16页
This paper presents a series of monotonically combined lateral loading tests to investigate the bearing capacity of the MSCs (modified suction caissons) in the saturated marine fine sand. The lateral loads were appl... This paper presents a series of monotonically combined lateral loading tests to investigate the bearing capacity of the MSCs (modified suction caissons) in the saturated marine fine sand. The lateral loads were applied under load- and displacement-controlled methods at the loading eccentricity ratios of 1.5, 2.0 and 2.5. Results show that, in the displacement-controlled test, the deflection-softening behavior of load-deflection curves for MSCs was observed, and the softening degree of the load-deflection response increased with the increasing external skirt length or the decreasing loading eccentricity. It was also found that the rotation center of the MSC at failure determined by the load-controlled method is slightly lower than that by the displacement-controlled method. The calculated MSC capacity based on the rotation center position in serviceability limit state is relatively conservative, compared with the calculated capacity based on the rotation center position in the ultimate limit state. In the limit state, the passive earth pressures opposite the loading direction under load- and displacement-controlled methods decrease by 46% and 74% corresponding to peak values, respectively; however, the passive earth pressures in the loading direction at failure only decrease by approximately 3% and 7%, compared with their peak values. 展开更多
关键词 MSC (modified suction caisson) saturated marine fine sand model tests load- and displacement-controlled loading laterally combined bearing capacity earth pressure
下载PDF
Bearing Capacity and Technical Advantages of Composite Bucket Foundation of Offshore Wind Turbines 被引量:34
15
作者 练继建 孙立强 +1 位作者 张金凤 王海军 《Transactions of Tianjin University》 EI CAS 2011年第2期132-137,共6页
Based on mechanical characteristics such as large vertical load, large horizontal load, large bending moment and complex geological conditions, a large scale composite bucket foundation (CBF) is put forward. Both th... Based on mechanical characteristics such as large vertical load, large horizontal load, large bending moment and complex geological conditions, a large scale composite bucket foundation (CBF) is put forward. Both the theoretical analysis and numerical simulation are employed to study the bearing capacity of CBF and the relationship between loads and ground deformation. Furthermore, monopile, high-rise pile cap, tripod and CBF designs are compared to analyze the bearing capacity and ground deformation, with a 3-MW wind generator as an example. The resuits indicate that CBF can effectively bear horizontal load and large bending moment resulting from upper structures and environmental load. 展开更多
关键词 offshore wind turbine composite bucket foundation mode of bearing capacity numerical simulation
下载PDF
Axial Bearing Capacity of Short FRP Confined Concrete-filled Steel Tubular Columns 被引量:7
16
作者 刘兰 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2010年第3期454-458,共5页
The bearing capacity of FRP confined concrete-filled steel tubular (FRP-CFST) columns under axial compression was investigated. This new type of composite column is a concrete-filled steel tube (CFST) confined wit... The bearing capacity of FRP confined concrete-filled steel tubular (FRP-CFST) columns under axial compression was investigated. This new type of composite column is a concrete-filled steel tube (CFST) confined with fiber-reinforced polymer (FRP) wraps. Totally 11 short column specimens were tested to failure under axial compression. The influences of the type and quantity of FRP, the thickness of steel tube and the concrete strength were studied. It was found that the bearing capacity of short FRP-CFST column was much higher than that of comparable CFST column. Furthermore, the formulas for calculating the bearing capacity of the FRP-CFST columns are proposed. The analytical calculated results agree well with the experimental results. 展开更多
关键词 COLUMNS concrete-filled steel tubes (CFST) fiber reinforced polymer (FRP) CONFINEMENT bearing capacity.
下载PDF
Lateral Bearing Capacity of Modified Suction Caissons Determined by Using the Limit Equilibrium Method 被引量:6
17
作者 LI Da-yong MA Shi-li +1 位作者 ZHANG Yu-kun CHEN Fu-quan 《China Ocean Engineering》 SCIE EI CSCD 2018年第4期461-466,共6页
The modified suction caisson(MSC) adds a short-skirted structure around the regular suction caissons to increase the lateral bearing capacity and limit the deflection. The MSC is suitable for acting as the offshore wi... The modified suction caisson(MSC) adds a short-skirted structure around the regular suction caissons to increase the lateral bearing capacity and limit the deflection. The MSC is suitable for acting as the offshore wind turbine foundation subjected to larger lateral loads compared with the imposed vertical loads. Determination of the lateral bearing capacity is a key issue for the MSC design. The formula estimating the lateral bearing capacity of the MSC was proposed in terms of the limit equilibrium method and was verified by the test results. Parametric studies on the lateral bearing capacity were also carried out. It was found that the lateral bearing capacity of the MSC increases with the increasing length and radius of the external skirt, and the lateral bearing capacity increases linearly with the increasing coefficient of subgrade reaction. The maximum lateral bearing capacity of the MSC is attained when the ratio of the radii of the internal compartment to the external skirt equals 0.82 and the ratio of the lengths of the external skirt to the internal compartment equals 0.48, provided that the steel usage of the MSC is kept constant. 展开更多
关键词 modified suction caissons(MSCs) lateral bearing capacity limit equilibrium method parametric studies
下载PDF
Empirical methods for determining shaft bearing capacity of semi-deep foundations socketed in rocks 被引量:6
18
作者 S.Rezazadeh A.Eslami 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2017年第6期1140-1151,共12页
Semi-deep foundations socketed in rocks are considered to be a viable option for the foundations in the presence of heavy load imposed by high-rise structures, due to the low settlement and high bearing capacity. In t... Semi-deep foundations socketed in rocks are considered to be a viable option for the foundations in the presence of heavy load imposed by high-rise structures, due to the low settlement and high bearing capacity. In the optimum design of semi-deep foundations, prediction of the shaft bearing capacity, rs, of foundations socketed in rocks is thus critically important. In this study, the unconfined compressive strength(UCS), qu, has been applied in order to investigate the shaft bearing capacity. For this, a database of 106 full-scale load tests is compiled with UCS values of surrounding rocks, in which 34 tests with rock quality designation(RQD), and 5 tests with rock mass rating(RMR). The bearing rocks for semi-deep foundations include limestone, mudstone, siltstone, shale, granite, tuff, granodiorite, claystone, sandstone, phyllite, schist, and greywacke. Using the database, the applicability and accuracy of the existing empirical methods are evaluated and new relations are derived between the shaft bearing capacity and UCS based on the types of rocks. Moreover, a general equation in case of unknown rock types is proposed and it is verified by another set of data. Since rock-socketed shafts are supported by rock mass(not intact rock), a reduction factor for the compressive strength is suggested and verified in which the effect of discontinuities is considered using the modified UCS, qu(modified), based upon RMR and RQD in order to take into account the effect of the rock mass properties. 展开更多
关键词 Shaft bearing capacity Semi-deep foundations Database Rock-socketed shaft Unconfined compressive strength(UCS)
下载PDF
Impact of climate change on allowable bearing capacity on theQinghai-Tibetan Plateau 被引量:8
19
作者 XU Xiao-Ming WU Qing-Bai 《Advances in Climate Change Research》 SCIE CSCD 2019年第2期99-108,共10页
Climate change has a substantial impact on infrastructures in the permafrost on the Qinghai-Tibetan Plateau (QTP). In this study, the mean annual ground temperature (MAGT) and permafrost evolution were investigated in... Climate change has a substantial impact on infrastructures in the permafrost on the Qinghai-Tibetan Plateau (QTP). In this study, the mean annual ground temperature (MAGT) and permafrost evolution were investigated in both the historical (1950-2005) and projected (2006-2099) periods. Then, an allowable bearing capacity model was used to discuss the allowable bearing capacity change on the QTP. Results show that the MAGT increased by 0.36 ℃ during 1950-2005. The MAGT will increase by 0.40 (RCP2.6), 0.79 (RCP4.5), 1.07 (RCP6.0), and 1.75 (RCP8.5)℃C during 2006-2099. In addition, the permafrost area has decreased by 0.195 × 10^6 km2 in 1950-2005. The permafrost area will decrease by 0.232 × 10^6 (RCP2.6), 0.468 × 10^6 (RCP4.5), 0.564 × 10^6 (RCP6.0), and 0.803 × 10^6 (RCP8.5) km2 during 2006-2099. With the degradation of permafrost, the allowable bearing capacity in permafrost zones would decrease accordingly. The decreasing trend is 6 kPa per 10 years in 1950-2005, and will be 0.6 (RCP2.6), 5 (RCP4.5), 7 (RCP6.0), and 11 (RCP8.5) kPa per 10 years during 2006-2099. The most remarkable trend would be observed under RCP8.5. Meanwhile, some scientific advices for the design, construction, operation and maintenance of permafrost engineering in the context of climate change were provided. 展开更多
关键词 Qinghai-Tibetan PLATEAU CLIMATE CHANGE PERMAFROST Allowable bearing capacity
下载PDF
Bearing capacity of foundation on slope determined by energy dissipation method and model experiments 被引量:15
20
作者 杨小礼 王志斌 +1 位作者 邹金锋 李亮 《Journal of Central South University of Technology》 EI 2007年第1期125-128,共4页
To determine the ultimate bearing capacity of foundations on sloping ground surface in practice, energy dissipation method was used to formulate the beating capacity as programming problem, and full-scale model experi... To determine the ultimate bearing capacity of foundations on sloping ground surface in practice, energy dissipation method was used to formulate the beating capacity as programming problem, and full-scale model experiments were investigated to analyze the performance of the soil slopes loaded by a strip footing in laboratory. The soil failure is governed by a linear Mohr-Coulomb yield criterion, and soil deformation follows an associated flow rule. Based on the energy dissipation method of plastic mechanics, a multi-wedge translational failure mechanism was employed to obtain the three bearing capacity factors related to cohesion, equivalent surcharge load and the unit gravity for various slope inclination angles. Numerical results were compared with those of the published solutions using finite element method and those of model experiments. The bearing capacity factors were presented in the form of design charts for practical use in engineering. The results show that limit analysis solutions approximate to those of model tests, and that the energy dissipation method is effective to estimate bearing capacity of soil slope. 展开更多
关键词 energy dissipation bearing capacity soil slope model experiment
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部