期刊文献+
共找到1,607篇文章
< 1 2 81 >
每页显示 20 50 100
A progressive framework for rotary motion deblurring
1
作者 Jinhui Qin Yong Ma +2 位作者 Jun Huang Fan Fan You Du 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第2期159-172,共14页
The rotary motion deblurring is an inevitable procedure when the imaging seeker is mounted in the rotating missiles.Traditional rotary motion deblurring methods suffer from ringing artifacts and noise,especially for l... The rotary motion deblurring is an inevitable procedure when the imaging seeker is mounted in the rotating missiles.Traditional rotary motion deblurring methods suffer from ringing artifacts and noise,especially for large blur extents.To solve the above problems,we propose a progressive rotary motion deblurring framework consisting of a coarse deblurring stage and a refinement stage.In the first stage,we design an adaptive blur extents factor(BE factor)to balance noise suppression and details reconstruction.And a novel deconvolution model is proposed based on BE factor.In the second stage,a triplescale deformable module CNN(TDM-CNN)is designed to reduce the ringing artifacts,which can exploit the 2D information of an image and adaptively adjust spatial sampling locations.To establish a standard evaluation benchmark,a real-world rotary motion blur dataset is proposed and released,which includes rotary blurred images and corresponding ground truth images with different blur angles.Experimental results demonstrate that the proposed method outperforms the state-of-the-art models on synthetic and real-world rotary motion blur datasets.The code and dataset are available at https://github.com/JinhuiQin/RotaryDeblurring. 展开更多
关键词 Rotary motion deblurring Progressive framework blur extents factor TDM-CNN
下载PDF
Restoration of space-variant blurred image based on motion-blurred target segmentation 被引量:4
2
作者 Yuye Zhang Xuewei Wang Chunxin Wang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2010年第2期191-196,共6页
In imaging on moving target, it is easy to get space- variant blurred image. In order to recover the image and gain recognizable target, an approach to recover the space-variant blurred image is presented based on ima... In imaging on moving target, it is easy to get space- variant blurred image. In order to recover the image and gain recognizable target, an approach to recover the space-variant blurred image is presented based on image segmentation. Be- cause of motion blur's convolution process, the pixels of observed image's target and background will be displaced and piled up to produce two superposition regions. As a result, the neighbor- ing pixels in the superposition regions will have similar grey level change. According to the pixel's motion-blur character, the target's blurred edge of superposition region could be detected. Canny operator can be recurred to detect the target edge which parallels the motion blur direction. Then in the segmentation process, the whole target image which has the character of integral convolution between motion blur and real target image can be obtained. At last, the target image is restored by deconvolution algorithms with adding zeros. The restoration result indicates that the approach can effectively solve the kind of problem of space-variant motion blurred image restoration. 展开更多
关键词 image restoration space-variant blur image segmen- tation motion-blur.
下载PDF
Blind-restoration-based blind separation method for permuted motion blurred images 被引量:2
3
作者 方勇 王伟 《Journal of Shanghai University(English Edition)》 CAS 2011年第2期79-84,共6页
A novel single-channel blind separation algorithm for permuted motion blurred images is proposed by using blind restoration in this paper. Both the motion direction and the length of the point spread function (PSF) ... A novel single-channel blind separation algorithm for permuted motion blurred images is proposed by using blind restoration in this paper. Both the motion direction and the length of the point spread function (PSF) are estimated by Radon transformation and extrema a detection. Using the estimated blur parameters, the permuted image is restored by performing the L-R blind restoration method. The permutation mixing matrices can be accurately estimated by classifying the ringing effect in the restored image, thereby the source images can be separated. Simulation results show a better separation efficiency for the permuted motion blurred image with various permutation operations. The proposed algorithm indicates a better performance on the robustness against Gaussian noise and lossy JPEG compression. 展开更多
关键词 permuted image blind source separation (BSS) motion blur blind restoration SINGLE-CHANNEL
下载PDF
Numericals for total variation-based reconstruction of motion blurred images 被引量:1
4
作者 XU Qiu-bin 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2010年第3期367-373,共7页
In this paper image with horizontal motion blur, vertical motion blur and angled motion blur are considered. We construct several difference schemes to the highly nonlinear term △↓.(△↓u/√|△↓|^2+β) of the ... In this paper image with horizontal motion blur, vertical motion blur and angled motion blur are considered. We construct several difference schemes to the highly nonlinear term △↓.(△↓u/√|△↓|^2+β) of the total variation-based image motion deblurring problem. The large nonlinear system is linearized by fixed point iteration method. An algebraic multigrid method with Krylov subspace acceleration is used to solve the corresponding linear equations as in [7]. The algorithms can restore the image very well. We give some numerical experiments to demonstrate that our difference schemes are efficient and robust. 展开更多
关键词 Motion blur difference scheme fixed point method algebraic multigrid method.
下载PDF
3D Reconstruction for Motion Blurred Images Using Deep Learning-Based Intelligent Systems 被引量:4
5
作者 Jing Zhang Keping Yu +2 位作者 Zheng Wen Xin Qi Anup Kumar Paul 《Computers, Materials & Continua》 SCIE EI 2021年第2期2087-2104,共18页
The 3D reconstruction using deep learning-based intelligent systems can provide great help for measuring an individual’s height and shape quickly and accurately through 2D motion-blurred images.Generally,during the a... The 3D reconstruction using deep learning-based intelligent systems can provide great help for measuring an individual’s height and shape quickly and accurately through 2D motion-blurred images.Generally,during the acquisition of images in real-time,motion blur,caused by camera shaking or human motion,appears.Deep learning-based intelligent control applied in vision can help us solve the problem.To this end,we propose a 3D reconstruction method for motion-blurred images using deep learning.First,we develop a BF-WGAN algorithm that combines the bilateral filtering(BF)denoising theory with a Wasserstein generative adversarial network(WGAN)to remove motion blur.The bilateral filter denoising algorithm is used to remove the noise and to retain the details of the blurred image.Then,the blurred image and the corresponding sharp image are input into the WGAN.This algorithm distinguishes the motion-blurred image from the corresponding sharp image according to the WGAN loss and perceptual loss functions.Next,we use the deblurred images generated by the BFWGAN algorithm for 3D reconstruction.We propose a threshold optimization random sample consensus(TO-RANSAC)algorithm that can remove the wrong relationship between two views in the 3D reconstructed model relatively accurately.Compared with the traditional RANSAC algorithm,the TO-RANSAC algorithm can adjust the threshold adaptively,which improves the accuracy of the 3D reconstruction results.The experimental results show that our BF-WGAN algorithm has a better deblurring effect and higher efficiency than do other representative algorithms.In addition,the TO-RANSAC algorithm yields a calculation accuracy considerably higher than that of the traditional RANSAC algorithm. 展开更多
关键词 3D reconstruction motion blurring deep learning intelligent systems bilateral filtering random sample consensus
下载PDF
MEASUREMENT OF ANGULAR VIBRATION AMPLITUDE BY ACTIVELY BLURRED IMAGES 被引量:1
6
作者 GUAN Baiqing WANG Shigang LIU Chong LI Qian 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2007年第1期77-81,共5页
A novel motion-blur-based method for measuring the angular amplitude of a high-frequency rotational vibration is schemed. The proposed approach combines the active vision concept and the mechanism of motion-from-blur,... A novel motion-blur-based method for measuring the angular amplitude of a high-frequency rotational vibration is schemed. The proposed approach combines the active vision concept and the mechanism of motion-from-blur, generates motion blur on the image plane actively by extending exposure time, and utilizes the motion blur information in polar images to estimate the angular amplitude of a high-frequency rotational vibration. This method obtains the analytical results of the angular vibration amplitude from the geometric moments of a motion blurred polar image and an unblurred image for reference. Experimental results are provided to validate the presented scheme. 展开更多
关键词 Vibration measurement Rotational vibration Active vision Motion blur Geometric moment
下载PDF
Influence of Blurred Ways on Pattern Recognition of a Scale-Free Hopfield Neural Network
7
作者 常文利 《Communications in Theoretical Physics》 SCIE CAS CSCD 2010年第1期195-199,共5页
We investigate the influence of blurred ways on pattern recognition of a Barabasi-Albert scale-free Hopfield neural network (SFHN) with a small amount of errors. Pattern recognition is an important function of infor... We investigate the influence of blurred ways on pattern recognition of a Barabasi-Albert scale-free Hopfield neural network (SFHN) with a small amount of errors. Pattern recognition is an important function of information processing in brain. Due to heterogeneous degree of scale-free network, different blurred ways have different influences on pattern recognition with same errors. Simulation shows that among partial recognition, the larger loading ratio (the number of patterns to average degree P/ (k) ) is, the smaller the overlap of SFHN is. The influence of directed (large) way is largest and the directed (small) way is smallest while random way is intermediate between them. Under the ratio of the numbers of stored patterns to the size of the network PIN is less than O. 1 conditions, there are three families curves of the overlap corresponding to directed (small), random and directed (large) blurred ways of patterns and these curves are not associated with the size of network and the number of patterns. This phenomenon only occurs in the SFHN. These conclusions are benefit for understanding the relation between neural network structure and brain function. 展开更多
关键词 scale-free neural network pattern recognition blurred ways
下载PDF
No-Reference Blur Assessment Based on Re-Blurring Using Markov Basis
8
作者 Gurwinder Kaur Ashwani Kumar 《Intelligent Automation & Soft Computing》 SCIE 2023年第1期281-296,共16页
Blur is produced in a digital image due to low passfiltering,moving objects or defocus of the camera lens during capture.Image viewers are annoyed by blur artefact and the image's perceived quality suffers as a re... Blur is produced in a digital image due to low passfiltering,moving objects or defocus of the camera lens during capture.Image viewers are annoyed by blur artefact and the image's perceived quality suffers as a result.The high-quality input is relevant to communication service providers and imaging product makers because it may help them improve their processes.Human-based blur assessment is time-consuming,expensive and must adhere to subjective evaluation standards.This paper presents a revolutionary no-reference blur assessment algorithm based on reblurring blurred images using a special mask developed with a Markov basis and Laplacefilter.Thefinal blur score of blurred images has been calculated from the local variation in horizontal and vertical pixel intensity of blurred and re-blurred images.The objective scores are generated by applying proposed algorithm on the two image databases i.e.,Laboratory for image and video engineering(LIVE)database and Tampere image database(TID 2013).Finally,on the basis of objective and subjective scores performance analysis is done in terms of Pearson linear correlation coefficient(PLCC),Spearman rank-order correlation coefficient(SROCC),Mean absolute error(MAE),Root mean square error(RMSE)and Outliers ratio(OR).The existing no-reference blur assessment algorithms have been used various methods for the evaluation of blur from no-reference image such as Just noticeable blur(JNB),Cumulative Probability Distribution of Blur Detection(CPBD)and Edge Model based Blur Metric(EMBM).The results illustrate that the proposed method was successful in predicting high blur scores with high accuracy as compared to existing no-reference blur assessment algorithms such as JNB,CPBD and EMBM algorithms. 展开更多
关键词 blur score blur variance objective scores re-blurred image subjective scores
下载PDF
Image defocus deblurring method based on gradient difference of boundary neighborhood
9
作者 Junjie TAO Yinghui WANG +4 位作者 Haomiao MA Tao YAN Lingyu AI Shaojie ZHANG Wei LI 《Virtual Reality & Intelligent Hardware》 EI 2023年第6期538-549,共12页
Background For static scenes with multiple depth layers,existing defocused image deblurring methods have the problems of edge-ringing artifacts or insufficient deblurring owing to inaccurate estimation of the blur amo... Background For static scenes with multiple depth layers,existing defocused image deblurring methods have the problems of edge-ringing artifacts or insufficient deblurring owing to inaccurate estimation of the blur amount,and prior knowledge in nonblind deconvolution is not strong,which leads to image detail recovery challenges.Methods To this end,this study proposes a blur map estimation method for defocused images based on the gradient difference of the boundary neighborhood,which uses the gradient difference of the boundary neighborhood to accurately obtain the amount of blurring,thereby preventing boundary ringing artifacts.The obtained blur map is then used for blur detection to determine whether the image needs to be deblurred,thereby improving the efficiency of deblurring without manual intervention and judgment.Finally,a nonblind deconvolution algorithm was designed to achieve image deblurring based on the blur amount selection strategy and sparse prior.Results Experimental results showed that our method improves PSNR(Peak Signal-to-Noise Ratio)and SSIM(Structural Similarity Index)by an average of 4.6%and 7.3%,respectively,compared to existing methods.Conclusions Experimental results showed that the proposed method outperforms existing methods.Compared to existing methods,our method can better solve the problems of boundary ringing artifacts and detail information preservation in defocused image deblurring. 展开更多
关键词 Defocused image DEblurRING GRADIENT Boundary neighborhood blur amount estimation
下载PDF
基于空间非一致模糊核标定的红外图像超分辨率重建方法 被引量:1
10
作者 曹军峰 丁庆海 罗海波 《红外与激光工程》 EI CSCD 北大核心 2024年第2期217-226,共10页
近年来,红外成像系统在工业、安防、遥感等领域获得了广泛的应用,但由于制造工艺及成本制约,红外系统的分辨率仍然较低。基于深度神经网络的单帧图像超分辨率重建技术是提高红外图像分辨率的有效方法,获得了广泛研究,并在仿真图像上取... 近年来,红外成像系统在工业、安防、遥感等领域获得了广泛的应用,但由于制造工艺及成本制约,红外系统的分辨率仍然较低。基于深度神经网络的单帧图像超分辨率重建技术是提高红外图像分辨率的有效方法,获得了广泛研究,并在仿真图像上取得了显著进展,但应用于实际场景图像时容易出现伪影或图像模糊等现象。造成这种性能差异的主要原因是目前方法大多假定造成图像退化的模糊核是空间一致的,然而实际红外光学系统不可避免地存在像差、热离焦等,由此造成的图像模糊的模糊核并非空间一致的。针对这一问题,提出了一种非盲模糊核估计方法,通过采集特定的靶标图像,并设计模糊核估计网络,求解空间非一致模糊核;设计基于图像分块的超分辨率重建方法,将图像块和对应区域的模糊核一起输入非盲超分辨率重建网络进行子块图像重建,再通过子块合并和重叠区域图像融合,得到最终的高分辨率图像。实验结果表明,光学系统自身引起了模糊核随空间位置缓慢变化,在实验室条件下标定模糊核并基于图像分块进行超分辨率重建的方法可显著提高红外图像超分辨率重建的效果。 展开更多
关键词 超分辨率重建 空间非一致模糊 模糊核估计 红外图像
下载PDF
Camera Independent Motion Deblurring in Videos Using Machine Learning
11
作者 Tyler Welander Ronald Marsh Bryce Gruber 《Journal of Intelligent Learning Systems and Applications》 2023年第4期89-107,共19页
In this paper, we will be looking at our efforts to find a novel solution for motion deblurring in videos. In addition, our solution has the requirement of being camera-independent. This means that the solution is ful... In this paper, we will be looking at our efforts to find a novel solution for motion deblurring in videos. In addition, our solution has the requirement of being camera-independent. This means that the solution is fully implemented in software and is not aware of any of the characteristics of the camera. We found a solution by implementing a Convolutional Neural Network-Long Short Term Memory (CNN-LSTM) hybrid model. Our CNN-LSTM is able to deblur video without any knowledge of the camera hardware. This allows it to be implemented on any system that allows the camera to be swapped out with any camera model with any physical characteristics. 展开更多
关键词 Motion blur VIDEO Convolutional Neural Network Long Short-Term Memory AirSim OPENCV
下载PDF
基于深度学习的红外成像退化模型辨识及超分辨率成像方法
12
作者 曹军峰 丁庆海 +2 位作者 邹德鹏 秦恒加 罗海波 《红外与激光工程》 EI CSCD 北大核心 2024年第5期218-228,共11页
红外成像系统由于制造工艺和成本制约,分辨率仍然较低。图像超分辨率重建技术是提高图像分辨率的有效方法,获得了广泛研究,并在仿真图像上获得了很好的效果,但应用于实际图像时效果不甚理想,主要原因是实际成像退化更加复杂,包括红外光... 红外成像系统由于制造工艺和成本制约,分辨率仍然较低。图像超分辨率重建技术是提高图像分辨率的有效方法,获得了广泛研究,并在仿真图像上获得了很好的效果,但应用于实际图像时效果不甚理想,主要原因是实际成像退化更加复杂,包括红外光学系统像差和装配误差引起的空间非一致模糊,以及受工作温度影响导致的模糊核变化。针对上述问题,提出一种基于深度学习的红外成像退化模型辨识方法和基于退化模型约束的超分辨率重建方法,通过在不同工作温度下采集标定靶标图像,标定不同工作温度、不同空间位置的模糊核;采用卷积神经网络建立成像退化模型,并利用定标数据进行模型参数求解,为超分辨率重建提供更多先验信息;设计迭代超分辨率重建网络,交替进行退化参数估计和超分辨率重建,经过多次迭代逐步提高重建效果。实验结果表明,采用卷积神经网络求解的成像退化模型可准确描述模糊核变化规律,基于退化模型约束和退化参数在线学习的超分辨率重建方法可显著提高红外超分辨率成像的效果,具有较高的工程应用价值。 展开更多
关键词 超分辨率 退化模型辨识 空间非一致模糊 模糊核估计 迭代优化 红外图像
下载PDF
基于改进的Cascade RCNN铸管字符检测算法
13
作者 王宇 徐福丽 +5 位作者 王怀震 崔勇 姜岩 陶晔 王译笙 张琦 《计算机集成制造系统》 EI CSCD 北大核心 2024年第11期3954-3966,共13页
由于工业现场采集的铸管字符图像存在背景模糊、字符区域占比小、刻字位置不固定、油漆遮挡等问题,导致现有模型的检测精度难以满足工业现场的需求。针对上述问题,提出改进的Cascade RCNN铸管字符检测算法。首先对特征金字塔进行改进,... 由于工业现场采集的铸管字符图像存在背景模糊、字符区域占比小、刻字位置不固定、油漆遮挡等问题,导致现有模型的检测精度难以满足工业现场的需求。针对上述问题,提出改进的Cascade RCNN铸管字符检测算法。首先对特征金字塔进行改进,提出融合小目标增强的特征金字塔(STE-FPN),利用多尺度特征融合的特征增强能力丰富铸管小目标字符的特征信息。其次引入自矫正/池化的ResNeSt(SCP-ResNeSt)作为特征提取网络,利用自矫正卷积和池化操作以提升背景复杂的铸管字符特征提取效率。最后对级联结构进行改进,引进Mask分支结构,可以自适应地检测字符区域并去除干扰区域,优化了检测结果。将改进后的算法在铸管数据集上进行测试,其平均检测精度mAP为99.1%,比原Cascade RCNN算法提高了2.3%,得到的精度表明改进后的性能优于原算法。 展开更多
关键词 铸管字符检测 背景模糊 Cascade RCNN ResNeSt
下载PDF
基于改进维纳滤波算法的运动模糊二维码图像复原方法
14
作者 杨建华 方园园 赵轩 《激光杂志》 CAS 北大核心 2024年第2期91-94,共4页
针对二维码在动态工业产品检测中,容易发生运动模糊,导致识别难度加大的问题,设计了一种基于改进维纳滤波的运动模糊二维码图像复原方法。在传统的维纳滤波图像复原过程中,由于正则项K值的影响,导致复原效果存在差异,结合了遗传算法,通... 针对二维码在动态工业产品检测中,容易发生运动模糊,导致识别难度加大的问题,设计了一种基于改进维纳滤波的运动模糊二维码图像复原方法。在传统的维纳滤波图像复原过程中,由于正则项K值的影响,导致复原效果存在差异,结合了遗传算法,通过自适应寻优的方法实现了K值的估计,完成了图像的复原。实验结果表明:改进算法比传统算法复原以后的图像峰值信噪比(PSNR)提高了约4 dB左右,该方法可以有效地还原出运动模糊二维码图像,提高了二维码的识别的效率。 展开更多
关键词 QR二维码 运动模糊 图像复原
下载PDF
地铁列车牵引系统状态评估方法研究
15
作者 李小波 张程 吴浩 《铁道机车车辆》 北大核心 2024年第2期138-144,共7页
充分挖掘现场故障统计数据,提出一种地铁列车牵引系统状态评估方法。首先基于牵引系统故障树建立层次分析模型,构建各层级评判矩阵并确定权重,然后计算牵引系统各模块基本事件的灰色聚类系数,完成对系统模块层的状态评估,最后利用各模... 充分挖掘现场故障统计数据,提出一种地铁列车牵引系统状态评估方法。首先基于牵引系统故障树建立层次分析模型,构建各层级评判矩阵并确定权重,然后计算牵引系统各模块基本事件的灰色聚类系数,完成对系统模块层的状态评估,最后利用各模块聚类系数构建牵引系统模糊综合评判矩阵,采用模糊综合评判法对牵引系统整体的健康状态进行评估。结果表明,牵引逆变模块和牵引控制单元板卡是该车型地铁列车牵引系统的薄弱环节,应作为检修与维护中的重点对象。该评估方法综合利用故障树—层次分析法确定权重,降低了人为因素的影响,其评估结果可为地铁列车牵引系统主动维护和检修提供有效依据。 展开更多
关键词 地铁列车 主客观结合赋权 模糊灰色聚类 牵引系统 状态评估
下载PDF
基于改进残差网络的运动目标模糊图像复原方法
16
作者 孙灵 《现代电子技术》 北大核心 2024年第15期86-90,共5页
传统的残差网络在复原运动目标模糊图像时,在模糊程度较严重的情况下,存在特征提取不充分、噪声干扰等问题,导致恢复出的图像无法完全达到原始图像的清晰度和细节。对此,提出基于改进残差网络的运动目标模糊图像复原方法。对采集到的运... 传统的残差网络在复原运动目标模糊图像时,在模糊程度较严重的情况下,存在特征提取不充分、噪声干扰等问题,导致恢复出的图像无法完全达到原始图像的清晰度和细节。对此,提出基于改进残差网络的运动目标模糊图像复原方法。对采集到的运动目标模糊图像,采用多损失函数融合方法改进传统残差块结构,构建编码器-解码器网络训练结构,训练损失函数,提升网络的特征学习能力。通过完成训练的网络,输出运动目标模糊图像复原结果。实验结果表明,该方法复原运动目标模糊图像的峰值信噪比高于30 dB,结构相似性高于0.9。 展开更多
关键词 改进残差网络 运动目标 多损失函数融合 模糊图像 编辑器-解码器网络 复原方法
下载PDF
基于非局部操作和多尺度特征聚合的图像修复方法
17
作者 吕秀丽 王阳 曹志民 《化工自动化及仪表》 CAS 2024年第5期821-829,共9页
为有效解决修复大范围破损图像时存在的纹理模糊和整体语义信息不连贯的问题,提出基于非局部操作和多尺度特征聚合的两阶段图像修复算法,在第1阶段,边缘重建网络生成整体的边缘结构信息;在第2阶段,引入非局部操作机制进行纹理细节信息... 为有效解决修复大范围破损图像时存在的纹理模糊和整体语义信息不连贯的问题,提出基于非局部操作和多尺度特征聚合的两阶段图像修复算法,在第1阶段,边缘重建网络生成整体的边缘结构信息;在第2阶段,引入非局部操作机制进行纹理细节信息的修复。在CelebA-HQ数据集上采用不同掩码率的图像进行性能验证,结果显示所提模型的PSNR和SSIM分别达到了32.17 dB和0.982;与EdgeConnect、RFR、CTSDG和AOT-GAN模型进行比较,结果表明:该模型对大范围破损图像能够生成纹理更加清晰且语义合理的修复图像,PSNR、SSIM和FID指标均优于其他4种算法。 展开更多
关键词 图像修复 大范围破损 非局部操作 多尺度特征聚合 生成对抗网络 纹理模糊 掩码率 整体语义信息不连贯
下载PDF
FT-粗糙集模型的一些性质
18
作者 张纪平 周缪娟 李进金 《泉州师范学院学报》 2024年第2期1-9,共9页
T-粗糙集是Pawlak粗糙集理论发展过程中的一个重要模型,已成功应用于数据挖掘等诸多领域.FT-粗糙集模型能够在保持数据的完整性下处理连续型数据,是对仅能处理离散型数据的T-粗糙集模型上的发展.文章引入模糊近似空间(X,Y,T)一对模糊集... T-粗糙集是Pawlak粗糙集理论发展过程中的一个重要模型,已成功应用于数据挖掘等诸多领域.FT-粗糙集模型能够在保持数据的完整性下处理连续型数据,是对仅能处理离散型数据的T-粗糙集模型上的发展.文章引入模糊近似空间(X,Y,T)一对模糊集的弱逆和强逆定义,用量化方法研究FT-粗糙集的一些性质,得到模糊技能映射在析取模型、合取模型下分别生成的知识结构;用量化方法与矩阵表示探究FT-粗糙集模糊集值映射在并、交运算下的性质. 展开更多
关键词 FT-粗糙集 模糊近似空间 下逆和上逆 弱逆和强逆
下载PDF
三仁汤联合电针治疗湿性年龄相关性黄斑变性临床观察
19
作者 张璐 《中国中医药现代远程教育》 2024年第2期87-90,共4页
目的探讨三仁汤加减联合电针对湿性年龄相关性黄斑变性(AMD)患者黄斑视网膜厚度及临床疗效的影响。方法将110例单侧湿性AMD患者随机分为2组。对照组予入院常规治疗,试验组在对照组基础上予以三仁汤加减联合电针治疗,2组治疗3个月。比较... 目的探讨三仁汤加减联合电针对湿性年龄相关性黄斑变性(AMD)患者黄斑视网膜厚度及临床疗效的影响。方法将110例单侧湿性AMD患者随机分为2组。对照组予入院常规治疗,试验组在对照组基础上予以三仁汤加减联合电针治疗,2组治疗3个月。比较2组临床疗效、最佳矫正视力(BCVA)、眼压、黄斑中心凹厚度(CMT)、黄斑部色素上皮与脉络膜毛细血管复合层(PECCL)厚度、视网膜神经上皮层(RNL)厚度、神经纤维层(MNFL)厚度,以及并发症发生率。结果治疗后试验组总有效率90.91%(50/55)高于对照组的74.55%(41/55)(P<0.05)。治疗后,试验组矫正视力高于对照组,眼压、CMT低于对照组(P<0.05);试验组PECCL、RNL及MNFL厚度低于对照组(P<0.05)。2组患者并发症发生率比较,差异无统计学意义(P>0.05)。结论三仁汤加减联合电针治疗能明显改善湿性AMD患者视力,降低黄斑视网膜厚度,效果显著。 展开更多
关键词 视瞻昏渺 湿性年龄相关性黄斑变性 三仁汤 电针疗法 中医综合疗法
下载PDF
凉血十味片联合硝苯地平缓释片治疗原发性高血压性视网膜病变临床观察
20
作者 李强 《光明中医》 2024年第6期1175-1177,共3页
目的探究凉血十味片联合硝苯地平缓释片治疗原发性高血压性视网膜病变(HR)的疗效及安全性。方法选取HR患者100例,按照随机数字表法分为治疗组(凉血十味片+硝苯地平缓释片)及对照组(硝苯地平缓释片),各50例,对比2组临床疗效。结果治疗组... 目的探究凉血十味片联合硝苯地平缓释片治疗原发性高血压性视网膜病变(HR)的疗效及安全性。方法选取HR患者100例,按照随机数字表法分为治疗组(凉血十味片+硝苯地平缓释片)及对照组(硝苯地平缓释片),各50例,对比2组临床疗效。结果治疗组总有效率高于对照组(P<0.05);治疗后,治疗组血压、视力、眼底改变情况、眼底荧光素血管造影情况、中医证候积分均优于对照组(P<0.05)。结论凉血十味片联合硝苯地平缓释片治疗HR疗效确切,能有效提升患者视力,提高患者视觉质量,且无不良反应,安全有效。 展开更多
关键词 视瞻昏渺 原发性高血压性视网膜病变 凉血十味片 硝苯地平缓释片 中西医结合疗法
下载PDF
上一页 1 2 81 下一页 到第
使用帮助 返回顶部