Updated version of local non-equilibrium diffusion model (LNDM) for rapid solidification of binary alloys was considered. The LNDM takes into account deviation from local equilibrium of solute concentration and solu...Updated version of local non-equilibrium diffusion model (LNDM) for rapid solidification of binary alloys was considered. The LNDM takes into account deviation from local equilibrium of solute concentration and solute flux fields in bulk liquid. The exact solutions for solute concentration and flux in bulk liquid were obtained using hyperbolic diffusion equations. The results show the transition from diffusion-limited to purely thermally controlled solidification with effective diffusion coefficient →0 and complete solute trapping KLNDM(v)→1 at v→vDb for any kind of solid-liquid interface kinetics. Critical parameter for diffusionless solidification and complete solute trapping is the diffusion speed in bulk liquid vDb. Different models for solute trapping at the interface with different interface kinetic approaches were considered.展开更多
An analytical model was developed to describe Si?As alloy solidification in the whole range of measured interface velocity. It is demonstrated that at low interface velocity, the solidification occurs in the initial ...An analytical model was developed to describe Si?As alloy solidification in the whole range of measured interface velocity. It is demonstrated that at low interface velocity, the solidification occurs in the initial transient regime. The model leads to good comparison with the experimental data taking both local nonequilibrium effects at high interface velocity and steady state effects at low interface velocity into account. The local nonequilibrium diffusion effects shrink the initial transient period and lead to diffusionless solidification at high interface velocity.展开更多
Based on the two-energy equation model, taking into account viscous dissipation due to the interaction between solid skeleton and pore fluid flow, temperature expressions of the solid skeleton and pore fluid flow are ...Based on the two-energy equation model, taking into account viscous dissipation due to the interaction between solid skeleton and pore fluid flow, temperature expressions of the solid skeleton and pore fluid flow are obtained analytically for the thermally developing forced convection in a saturated porous medium parallel plate channel, with walls being at constant temperature. It is proved that the temperatures of the two phases for the local thermal nonequilibrium approach to the temperature derived from the one-energy equation model for the local thermal equilibrium when the heat exchange coefficient goes to infinite. The temperature profiles are shown in figures for different dimensionless parameters and the effects of the parameters on the local thermal nonequilibrium are revealed by parameter study.展开更多
文摘Updated version of local non-equilibrium diffusion model (LNDM) for rapid solidification of binary alloys was considered. The LNDM takes into account deviation from local equilibrium of solute concentration and solute flux fields in bulk liquid. The exact solutions for solute concentration and flux in bulk liquid were obtained using hyperbolic diffusion equations. The results show the transition from diffusion-limited to purely thermally controlled solidification with effective diffusion coefficient →0 and complete solute trapping KLNDM(v)→1 at v→vDb for any kind of solid-liquid interface kinetics. Critical parameter for diffusionless solidification and complete solute trapping is the diffusion speed in bulk liquid vDb. Different models for solute trapping at the interface with different interface kinetic approaches were considered.
基金partially supported by RFBR, research project No. 14-48-03535
文摘An analytical model was developed to describe Si?As alloy solidification in the whole range of measured interface velocity. It is demonstrated that at low interface velocity, the solidification occurs in the initial transient regime. The model leads to good comparison with the experimental data taking both local nonequilibrium effects at high interface velocity and steady state effects at low interface velocity into account. The local nonequilibrium diffusion effects shrink the initial transient period and lead to diffusionless solidification at high interface velocity.
基金Project supported by the National Natural Science Foundation of China (No. 10272070) and the Shanghai Leading Academic Discipline Project (No.Y0103)
文摘Based on the two-energy equation model, taking into account viscous dissipation due to the interaction between solid skeleton and pore fluid flow, temperature expressions of the solid skeleton and pore fluid flow are obtained analytically for the thermally developing forced convection in a saturated porous medium parallel plate channel, with walls being at constant temperature. It is proved that the temperatures of the two phases for the local thermal nonequilibrium approach to the temperature derived from the one-energy equation model for the local thermal equilibrium when the heat exchange coefficient goes to infinite. The temperature profiles are shown in figures for different dimensionless parameters and the effects of the parameters on the local thermal nonequilibrium are revealed by parameter study.