Assessment of the Hubble parameter as an indicator of the expansion rate of the universe holds a central position in the field of astronomy. From its initial estimate of about 500 km<span style="white-space:no...Assessment of the Hubble parameter as an indicator of the expansion rate of the universe holds a central position in the field of astronomy. From its initial estimate of about 500 km<span style="white-space:nowrap;">⋅</span>sec<sup>-1</sup><span style="white-space:nowrap;">⋅</span>parsc<sup>-1</sup>, this value had been steadily amended as the observational tools became more accurate and precise. Despite this, a gap remains between the value of observations relating to local and nonlocal estimations of the Hubble parameter that gave rise to what became known as the Hubble tension. This tension is addressed here while dealing with space fabric as a cosmological fluid that undergoes transition.展开更多
Cochlodinium polykrikoides is a notoriously harmful algal species that inflicts severe damage on the aquacultures of the coastal seas of Korea and Japan. Information on their expected movement tracks and boundaries of...Cochlodinium polykrikoides is a notoriously harmful algal species that inflicts severe damage on the aquacultures of the coastal seas of Korea and Japan. Information on their expected movement tracks and boundaries of influence is very useful and important for the effective establishment of a reduction plan. In general, the information is supported by a red-tide(a.k.a algal bloom) model. The performance of the model is highly dependent on the accuracy of parameters, which are the coefficients of functions approximating the biological growth and loss patterns of the C. polykrikoides. These parameters have been estimated using the bioassay data composed of growth-limiting factor and net growth rate value pairs. In the case of the C. polykrikoides, the parameters are different from each other in accordance with the used data because the bioassay data are sufficient compared to the other algal species. The parameters estimated by one specific dataset can be viewed as locally-optimized because they are adjusted only by that dataset. In cases where the other one data set is used, the estimation error might be considerable. In this study, the parameters are estimated by all available data sets without the use of only one specific data set and thus can be considered globally optimized. The cost function for the optimization is defined as the integrated mean squared estimation error, i.e., the difference between the values of the experimental and estimated rates. Based on quantitative error analysis, the root-mean squared errors of the global parameters show smaller values, approximately 25%–50%, than the values of the local parameters. In addition, bias is removed completely in the case of the globally estimated parameters. The parameter sets can be used as the reference default values of a red-tide model because they are optimal and representative. However, additional tuning of the parameters using the in-situ monitoring data is highly required.As opposed to the bioassay data, it is necessary because the bioassay data have limitations in terms of the in-situ coastal conditions.展开更多
A class of quasi-cubic B-spline base functions by trigonometric polynomials are established which inherit properties similar to those of cubic B-spline bases. The corresponding curves with a shape parameter a, defined...A class of quasi-cubic B-spline base functions by trigonometric polynomials are established which inherit properties similar to those of cubic B-spline bases. The corresponding curves with a shape parameter a, defined by the introduced base functions, include the B-spline curves and can approximate the B-spline curves from both sides. The curves can be adjusted easily by using the shape parameter a, where dpi(a,t) is linear with respect to da for the fixed t. With the shape parameter chosen properly, the defined curves can be used to precisely represent straight line segments, parabola segments, circular arcs and some transcendental curves, and the corresponding tensor product surfaces can also represent spherical surfaces, cylindrical surfaces and some transcendental surfaces exactly. By abandoning positive property, this paper proposes a new C^2 continuous blended interpolation spline based on piecewise trigonometric polynomials associated with a sequence of local parameters. Illustration showed that the curves and surfaces constructed by the blended spline can be adjusted easily and freely. The blended interpolation spline curves can be shape-preserving with proper local parameters since these local parameters can be considered to be the magnification ratio to the length of tangent vectors at the interpolating points. The idea is extended to produce blended spline surfaces.展开更多
A double-sensor probe was used to measure local interfacial parameters of a gas-liquid bubbly flow in a horizontal tube. The parameters included void fraction, interfacial concentration, bubble size distribution, bubb...A double-sensor probe was used to measure local interfacial parameters of a gas-liquid bubbly flow in a horizontal tube. The parameters included void fraction, interfacial concentration, bubble size distribution, bubble frequency and bubble interface velocity. The authors paid special attention to the probe design and construction for minimizing measurement errors. Measures were also taken in the design of sensor ends for preventing corrosions in the flow. This is an effort to improve the current double-sensor probe technique to meet the ever-increasing needs to local parameter measurements in gas-liquid two-phase flows.展开更多
A method to predict near-field strong ground motions for scenario earthquakes on active faults is proposed. First, macro-source parameters characterizing the entire source area, i.e., global source parameters, includi...A method to predict near-field strong ground motions for scenario earthquakes on active faults is proposed. First, macro-source parameters characterizing the entire source area, i.e., global source parameters, including fault length, fault width, rupture area, average slip on the fault plane, etc., are estimated by seismogeology survey, seismicity and seismic scaling laws. Second, slip distributions characterizing heterogeneity or roughness on the fault plane, i.e., local source parameters, are reproduced/evaluated by the hybrid slip model. Finally, the finite fault source model, developed from both the global and local source parameters, is combined with the stochastically synthetic technique of ground motion using the dynamic comer frequency based on seismology. The proposed method is applied to simulate the acceleration time histories on three base-rock stations during the 1994 Northridge earthquake. Comparisons between the predicted and recorded acceleration time histories show that the method is feasible and practicable.展开更多
Artificial bee colony(ABC) algorithm is motivated by the intelligent behavior of honey bees when seeking a high quality food source. It has a relatively simple structure but good global optimization ability. In order ...Artificial bee colony(ABC) algorithm is motivated by the intelligent behavior of honey bees when seeking a high quality food source. It has a relatively simple structure but good global optimization ability. In order to balance its global search and local search abilities further, some improvements for the standard ABC algorithm are made in this study. Firstly, the local search mechanism of cuckoo search optimization(CS) is introduced into the onlooker bee phase to enhance its dedicated search; secondly, the scout bee phase is also modified by the chaotic search mechanism. The improved ABC algorithm is used to identify the parameters of chaotic systems, the identified results from the present algorithm are compared with those from other algorithms. Numerical simulations, including Lorenz system and a hyper chaotic system, illustrate the present algorithm is a powerful tool for parameter estimation with high accuracy and low deviations. It is not sensitive to artificial measurement noise even using limited input data.展开更多
Underwater target localization and parameters(azimuth and range) estimation by the method of utilizing explosions as underwater sound sources are described in this paper.The narrow beam reverberation model of the targ...Underwater target localization and parameters(azimuth and range) estimation by the method of utilizing explosions as underwater sound sources are described in this paper.The narrow beam reverberation model of the target echo signal is researched to estimate the target azimuth in reverberation background.Estimation errors of target azimuth and range are studied and proved to approximately meet Gauss distribution.Then the variance formula of target range error is deduced.Simulation experiments are applied to research the target range error and its standard deviation,and a series of measures to improve the estimation accuracy of target range are proposed.It is confirmed by the data processing results of simulations and lake experiments that the proposed method can accurately locate underwater target at a long distance on the condition of a certain underwater explosion range error.展开更多
We consider the stochastic optimal control problem for the dynamical system of the stochastic differential equation driven by a local martingale with a spatial parameter.Assuming the convexity of the control domain,we...We consider the stochastic optimal control problem for the dynamical system of the stochastic differential equation driven by a local martingale with a spatial parameter.Assuming the convexity of the control domain,we obtain the stochastic maximum principle as the necessary condition for an optimal control,and we also prove its sufficiency under proper conditions.The stochastic linear quadratic problem in this setting is also discussed.展开更多
A high contrast to noise ratio(CNR)is always desirable for contrast-enhanced computed tomography angiography(CTA).To ensure a high CNR of the vascular images in CTA and potentially reduce the radiation exposure and co...A high contrast to noise ratio(CNR)is always desirable for contrast-enhanced computed tomography angiography(CTA).To ensure a high CNR of the vascular images in CTA and potentially reduce the radiation exposure and contrast usage,an adaptive bolus chasing method is proposed and evaluated compared to the existing constant-speed method.The proposed method is based on a local time and space parameter varying model of the contrast bolus.Optimal scan time for the next segment of the vasculature is estimated and predicted in real time and guides the computed tomography(CT)scanner table movement that guarantees that each segment of the vasculature is scanned with the maximum possible enhancement.Simulations and experimental results show that the proposed bolus chasing method outperforms the conventional constant-speed method substantially.展开更多
文摘Assessment of the Hubble parameter as an indicator of the expansion rate of the universe holds a central position in the field of astronomy. From its initial estimate of about 500 km<span style="white-space:nowrap;">⋅</span>sec<sup>-1</sup><span style="white-space:nowrap;">⋅</span>parsc<sup>-1</sup>, this value had been steadily amended as the observational tools became more accurate and precise. Despite this, a gap remains between the value of observations relating to local and nonlocal estimations of the Hubble parameter that gave rise to what became known as the Hubble tension. This tension is addressed here while dealing with space fabric as a cosmological fluid that undergoes transition.
基金The part of the project "Development of Korea Operational Oceanographic System(KOOS),Phase 2",funded by the Ministry of Oceans and Fisheries,Koreathe part of the project entitled "Cooperative Project on Korea-China Bilateral Committee on Ocean Science",funded by the Ministry of Oceans and Fisheries,Korea and China-Korea Joint Research Ocean Research Center
文摘Cochlodinium polykrikoides is a notoriously harmful algal species that inflicts severe damage on the aquacultures of the coastal seas of Korea and Japan. Information on their expected movement tracks and boundaries of influence is very useful and important for the effective establishment of a reduction plan. In general, the information is supported by a red-tide(a.k.a algal bloom) model. The performance of the model is highly dependent on the accuracy of parameters, which are the coefficients of functions approximating the biological growth and loss patterns of the C. polykrikoides. These parameters have been estimated using the bioassay data composed of growth-limiting factor and net growth rate value pairs. In the case of the C. polykrikoides, the parameters are different from each other in accordance with the used data because the bioassay data are sufficient compared to the other algal species. The parameters estimated by one specific dataset can be viewed as locally-optimized because they are adjusted only by that dataset. In cases where the other one data set is used, the estimation error might be considerable. In this study, the parameters are estimated by all available data sets without the use of only one specific data set and thus can be considered globally optimized. The cost function for the optimization is defined as the integrated mean squared estimation error, i.e., the difference between the values of the experimental and estimated rates. Based on quantitative error analysis, the root-mean squared errors of the global parameters show smaller values, approximately 25%–50%, than the values of the local parameters. In addition, bias is removed completely in the case of the globally estimated parameters. The parameter sets can be used as the reference default values of a red-tide model because they are optimal and representative. However, additional tuning of the parameters using the in-situ monitoring data is highly required.As opposed to the bioassay data, it is necessary because the bioassay data have limitations in terms of the in-situ coastal conditions.
基金Project supported by the National Natural Science Foundation of China (Nos. 10171026 and 60473114), the Research Funds forYoung Innovation Group, Education Department of Anhui Prov-ince (No. 2005TD03) and the Natural Science Foundation of An-hui Provincial Education Department (No. 2006KJ252B), China
文摘A class of quasi-cubic B-spline base functions by trigonometric polynomials are established which inherit properties similar to those of cubic B-spline bases. The corresponding curves with a shape parameter a, defined by the introduced base functions, include the B-spline curves and can approximate the B-spline curves from both sides. The curves can be adjusted easily by using the shape parameter a, where dpi(a,t) is linear with respect to da for the fixed t. With the shape parameter chosen properly, the defined curves can be used to precisely represent straight line segments, parabola segments, circular arcs and some transcendental curves, and the corresponding tensor product surfaces can also represent spherical surfaces, cylindrical surfaces and some transcendental surfaces exactly. By abandoning positive property, this paper proposes a new C^2 continuous blended interpolation spline based on piecewise trigonometric polynomials associated with a sequence of local parameters. Illustration showed that the curves and surfaces constructed by the blended spline can be adjusted easily and freely. The blended interpolation spline curves can be shape-preserving with proper local parameters since these local parameters can be considered to be the magnification ratio to the length of tangent vectors at the interpolating points. The idea is extended to produce blended spline surfaces.
基金Supported by the National Natural Science Foundation of China(No.59876032)and the Doctorate Foundation of Xi'an Jiaotong University(DFXJU-17).
文摘A double-sensor probe was used to measure local interfacial parameters of a gas-liquid bubbly flow in a horizontal tube. The parameters included void fraction, interfacial concentration, bubble size distribution, bubble frequency and bubble interface velocity. The authors paid special attention to the probe design and construction for minimizing measurement errors. Measures were also taken in the design of sensor ends for preventing corrosions in the flow. This is an effort to improve the current double-sensor probe technique to meet the ever-increasing needs to local parameter measurements in gas-liquid two-phase flows.
基金China Postdoctoral Science Foundation UnderGrant No. 2005037650 Heilongjiang Province PostdoctoralScience Foundation China EarthquakeAdministration’s Tenth"Five Year Plans" Project
文摘A method to predict near-field strong ground motions for scenario earthquakes on active faults is proposed. First, macro-source parameters characterizing the entire source area, i.e., global source parameters, including fault length, fault width, rupture area, average slip on the fault plane, etc., are estimated by seismogeology survey, seismicity and seismic scaling laws. Second, slip distributions characterizing heterogeneity or roughness on the fault plane, i.e., local source parameters, are reproduced/evaluated by the hybrid slip model. Finally, the finite fault source model, developed from both the global and local source parameters, is combined with the stochastically synthetic technique of ground motion using the dynamic comer frequency based on seismology. The proposed method is applied to simulate the acceleration time histories on three base-rock stations during the 1994 Northridge earthquake. Comparisons between the predicted and recorded acceleration time histories show that the method is feasible and practicable.
基金supported by the National Natural Science Foundation of China(Grant Nos.11172333&11272361)the Guangdong Province Natural Science Foundation(Grant No.2015A030313126)the Guangdong Province Science and Technology Program(Grant Nos.2014A020218004&2016A020223006)
文摘Artificial bee colony(ABC) algorithm is motivated by the intelligent behavior of honey bees when seeking a high quality food source. It has a relatively simple structure but good global optimization ability. In order to balance its global search and local search abilities further, some improvements for the standard ABC algorithm are made in this study. Firstly, the local search mechanism of cuckoo search optimization(CS) is introduced into the onlooker bee phase to enhance its dedicated search; secondly, the scout bee phase is also modified by the chaotic search mechanism. The improved ABC algorithm is used to identify the parameters of chaotic systems, the identified results from the present algorithm are compared with those from other algorithms. Numerical simulations, including Lorenz system and a hyper chaotic system, illustrate the present algorithm is a powerful tool for parameter estimation with high accuracy and low deviations. It is not sensitive to artificial measurement noise even using limited input data.
基金supported by the National Natural Science Foundation of China(61431020,61571434)
文摘Underwater target localization and parameters(azimuth and range) estimation by the method of utilizing explosions as underwater sound sources are described in this paper.The narrow beam reverberation model of the target echo signal is researched to estimate the target azimuth in reverberation background.Estimation errors of target azimuth and range are studied and proved to approximately meet Gauss distribution.Then the variance formula of target range error is deduced.Simulation experiments are applied to research the target range error and its standard deviation,and a series of measures to improve the estimation accuracy of target range are proposed.It is confirmed by the data processing results of simulations and lake experiments that the proposed method can accurately locate underwater target at a long distance on the condition of a certain underwater explosion range error.
基金The authors are also grateful to the two anonymous referees for their valuable comments.J.Song is partially supported by Shandong University(Grant No.11140089963041)the National Natural Science Foundation of China(Grant No.12071256).
文摘We consider the stochastic optimal control problem for the dynamical system of the stochastic differential equation driven by a local martingale with a spatial parameter.Assuming the convexity of the control domain,we obtain the stochastic maximum principle as the necessary condition for an optimal control,and we also prove its sufficiency under proper conditions.The stochastic linear quadratic problem in this setting is also discussed.
基金The work was supported partially by NSF ECS-0555394 and NIH/NIBIB EB004287.
文摘A high contrast to noise ratio(CNR)is always desirable for contrast-enhanced computed tomography angiography(CTA).To ensure a high CNR of the vascular images in CTA and potentially reduce the radiation exposure and contrast usage,an adaptive bolus chasing method is proposed and evaluated compared to the existing constant-speed method.The proposed method is based on a local time and space parameter varying model of the contrast bolus.Optimal scan time for the next segment of the vasculature is estimated and predicted in real time and guides the computed tomography(CT)scanner table movement that guarantees that each segment of the vasculature is scanned with the maximum possible enhancement.Simulations and experimental results show that the proposed bolus chasing method outperforms the conventional constant-speed method substantially.