期刊文献+
共找到33篇文章
< 1 2 >
每页显示 20 50 100
Fault Diagnosis Model Based on Feature Compression with Orthogonal Locality Preserving Projection 被引量:14
1
作者 TANG Baoping LI Feng QIN Yi 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2011年第5期891-898,共8页
Based on feature compression with orthogonal locality preserving projection(OLPP),a novel fault diagnosis model is proposed in this paper to achieve automation and high-precision of fault diagnosis of rotating machi... Based on feature compression with orthogonal locality preserving projection(OLPP),a novel fault diagnosis model is proposed in this paper to achieve automation and high-precision of fault diagnosis of rotating machinery.With this model,the original vibration signals of training and test samples are first decomposed through the empirical mode decomposition(EMD),and Shannon entropy is constructed to achieve high-dimensional eigenvectors.In order to replace the traditional feature extraction way which does the selection manually,OLPP is introduced to automatically compress the high-dimensional eigenvectors of training and test samples into the low-dimensional eigenvectors which have better discrimination.After that,the low-dimensional eigenvectors of training samples are input into Morlet wavelet support vector machine(MWSVM) and a trained MWSVM is obtained.Finally,the low-dimensional eigenvectors of test samples are input into the trained MWSVM to carry out fault diagnosis.To evaluate our proposed model,the experiment of fault diagnosis of deep groove ball bearings is made,and the experiment results indicate that the recognition accuracy rate of the proposed diagnosis model for outer race crack、inner race crack and ball crack is more than 90%.Compared to the existing approaches,the proposed diagnosis model combines the strengths of EMD in fault feature extraction,OLPP in feature compression and MWSVM in pattern recognition,and realizes the automation and high-precision of fault diagnosis. 展开更多
关键词 orthogonal locality preserving projection(OLPP) manifold learning feature compression Morlet wavelet support vector machine(MWSVM) empirical mode decomposition(EMD) fault diagnosis
下载PDF
Silhouettes Based Human Action Recognition in Video via Procrustes Analysis and Fisher Vector Coding 被引量:2
2
作者 CAI Jiaxin ZHONG Ranxu LI Junjie 《Journal of Donghua University(English Edition)》 EI CAS 2019年第2期140-148,共9页
This paper proposes a framework for human action recognition based on procrustes analysis and Fisher vector coding(FVC).Firstly,we applied a pose feature extracted from silhouette image by employing Procrustes analysi... This paper proposes a framework for human action recognition based on procrustes analysis and Fisher vector coding(FVC).Firstly,we applied a pose feature extracted from silhouette image by employing Procrustes analysis and local preserving projection(LPP).Secondly,the extracted feature can preserve the discriminative shape information and local manifold structure of human pose and is invariant to translation,rotation and scaling.Finally,after the pose feature was extracted,a recognition framework based on FVC and multi-class supporting vector machine was employed to classify the human action.Experimental results on benchmarks demonstrate the effectiveness of the proposed method. 展开更多
关键词 human action recognition PROCRUSTES analysis local preserving projection FISHER vector coding(FVC)
下载PDF
局部保持对支持向量机 被引量:4
3
作者 花小朋 丁世飞 《计算机研究与发展》 EI CSCD 北大核心 2014年第3期590-597,共8页
多面支持向量机(multiple surface support vector machine,MSSVM)分类方法作为传统支持向量机(support vector machine,SVM)的拓展在模式识别领域成为新的研究热点之一,然而已有的MSSVM方法并没有充分考虑到训练样本之间的局部几何结... 多面支持向量机(multiple surface support vector machine,MSSVM)分类方法作为传统支持向量机(support vector machine,SVM)的拓展在模式识别领域成为新的研究热点之一,然而已有的MSSVM方法并没有充分考虑到训练样本之间的局部几何结构以及所蕴含的判别信息.因此将保局投影(locality preserving projections,LPP)的基本思想引入到MSSVM中,提出局部保持对支持向量机(locality preserving twin support vector machine,LPTSVM).LPTSVM方法不但继承了MSSVM方法具有的异或(XOR)问题处理能力,而且充分考虑样本间的局部几何结构,体现样本间所蕴含的局部判别信息,从而在一定程度上提高了分类精度.主成分分析(principal component analysis,PCA)方法克服了LPTSVM奇异性问题,保证了LPTSVM方法的有效性.非线性情况下,通过经验核映射方法构造了非线性LPTSVM.在人造数据集和真实数据集上的测试表明LPTSVM方法具有较好的泛化性能. 展开更多
关键词 分类 多面支持向量机 保局投影 主成分分析 经验核映射 multiple surface support vector machine (MSSVM) locality preservING PROJECTION (LPP) principal component analysis (PCA)
下载PDF
基于全局和局部保持的半监督支持向量机 被引量:19
4
作者 皋军 王士同 邓赵红 《电子学报》 EI CAS CSCD 北大核心 2010年第7期1626-1633,共8页
支持向量机(SVM)作为正则化方法的一个特例在模式识别领域得到了成功地运用,然而传统的SVM方法作为一种有监督的学习方法主要依据最大间隔原则得到决策超平面的法向量,而并没有充分考虑样本内在的几何结构以及所蕴含的判别信息.因此,本... 支持向量机(SVM)作为正则化方法的一个特例在模式识别领域得到了成功地运用,然而传统的SVM方法作为一种有监督的学习方法主要依据最大间隔原则得到决策超平面的法向量,而并没有充分考虑样本内在的几何结构以及所蕴含的判别信息.因此,本文将线性判别分析(LDA)的类内散度和保局投影(LPP)的基本原理引入到SVM中,提出基于全局和局部保持的半监督支持向量机:GLSSVM,该方法在继承传统的SVM方法的特点的基础上,充分考虑样本间具有的全局和局部几何结构,体现样本间所蕴含的局部和全局判别信息,同时满足作为半监督方法的必须依据的一致性假设,从而在一定程度上提高了分类精度.通过在人造数据集和真实数据集上的测试表明该方法具有上述优势. 展开更多
关键词 支持向量机 保局投影 线性判别分析 半监督 一致性假设
下载PDF
一种新的浮选泡沫图像识别方法 被引量:7
5
作者 郝元宏 韩静 齐春 《西安交通大学学报》 EI CAS CSCD 北大核心 2011年第4期104-108,共5页
针对灰度共生矩阵法提取的浮选泡沫图像纹理特征相互混叠,不利于聚类和识别的问题,提出一种基于正交保局投影和支持向量机的浮选泡沫图像识别新方法.该方法利用正交保局投影法对原始纹理特征参数进行变换处理,有效改变了不同类别特征参... 针对灰度共生矩阵法提取的浮选泡沫图像纹理特征相互混叠,不利于聚类和识别的问题,提出一种基于正交保局投影和支持向量机的浮选泡沫图像识别新方法.该方法利用正交保局投影法对原始纹理特征参数进行变换处理,有效改变了不同类别特征参数的聚集程度,并利用支持向量机进行分类.实验结果表明,所提方法的正确识别率能够达到93.5%,与基于最近邻分类器的主元分析法相比,其性能更好. 展开更多
关键词 浮选 泡沫图像 机器视觉 正交保局投影 支持向量机
下载PDF
局部保留最大信息差v-支持向量机 被引量:10
6
作者 陶剑文 王士同 《自动化学报》 EI CSCD 北大核心 2012年第1期97-108,共12页
针对现有模式分类方法不能较好地保持数据空间的局部流形信息或差异信息等问题,提出一种基于流形学习的局部保留最大信息差v-支持向量机(Locality-preserved maximum information variance v-support vector machine,v-LPMIVSVM).对于... 针对现有模式分类方法不能较好地保持数据空间的局部流形信息或差异信息等问题,提出一种基于流形学习的局部保留最大信息差v-支持向量机(Locality-preserved maximum information variance v-support vector machine,v-LPMIVSVM).对于模式分类问题,v-LPMIVSVM引入局部同类离散度和局部异类离散度概念,分别体现输入空间局部流形结构和局部差异(或判别)信息,通过最小化局部同类离散度和最大化局部异类离散度,优化分类器的投影方向.同时,v-LPMIVSVM采用适于流形数据的测地线距离来度量数据点对间的相似性,以更好地反映流形数据的本质结构.人造和实际数据集实验结果显示所提方法具有良好的泛化性能. 展开更多
关键词 局部保留投影 V-支持向量机 流形学习 局部同类离散度 局部异类离散度
下载PDF
基于随机子空间-正交局部保持投影的支持向量机 被引量:3
7
作者 王雪松 高阳 程玉虎 《电子学报》 EI CAS CSCD 北大核心 2011年第8期1746-1750,共5页
针对高维数、小样本数据分类问题,提出一种基于随机子空间-正交局部保持投影的支持向量机.利用随机子空间方法对原始高维样本的特征空间进行多次随机采样,生成多个具有不同特征子集的基支持向量机(SVM)分类器;利用正交局部保持投影对各... 针对高维数、小样本数据分类问题,提出一种基于随机子空间-正交局部保持投影的支持向量机.利用随机子空间方法对原始高维样本的特征空间进行多次随机采样,生成多个具有不同特征子集的基支持向量机(SVM)分类器;利用正交局部保持投影对各基SVM分类器的样本进行特征提取,实现维数约简;然后,利用降维后的样本对各基SVM分类器进行训练;采用贝叶斯求和准则将各基SVM的分类结果进行融合以得到最终的分类结果.典型人脸数据库识别结果验证了本方法的可行性和有效性. 展开更多
关键词 随机子空间 正交局部保持投影 支持向量机 特征提取
下载PDF
基于OLPP和信息向量机的人脸识别 被引量:5
8
作者 刘建伟 徐翔 罗雄麟 《计算机工程》 CAS CSCD 北大核心 2010年第7期200-202,共3页
结合正交局部保持投影(OLPP)和信息向量机(IVM),提出用于人脸识别的OLPP-IVM算法。应用OLPP对原始人脸图像数据进行特征提取,利用IVM在降维后的数据上实现人脸分类。与主成分分析、线性判别分析等算法的比较实验证明,用该算法进行人脸... 结合正交局部保持投影(OLPP)和信息向量机(IVM),提出用于人脸识别的OLPP-IVM算法。应用OLPP对原始人脸图像数据进行特征提取,利用IVM在降维后的数据上实现人脸分类。与主成分分析、线性判别分析等算法的比较实验证明,用该算法进行人脸识别误差更小,性能更优越。 展开更多
关键词 信息向量机 正交局部保持投影 人脸识别 特征提取 多类分类
下载PDF
局部保持多投影向量Fisher判别分析算法 被引量:2
9
作者 张召 业宁 业巧林 《计算机学报》 EI CSCD 北大核心 2010年第5期865-876,共12页
特征选择是在损失较少信息的情况下处理高维图像数据的关键技术,是高维数据预处理的重要步骤.通过引入Fisher判别分析(Fisher Discriminant Analysis,FDA)和典型相关分析(Canonical Correlation Analysis,CCA)的思想,采用以样本的类标... 特征选择是在损失较少信息的情况下处理高维图像数据的关键技术,是高维数据预处理的重要步骤.通过引入Fisher判别分析(Fisher Discriminant Analysis,FDA)和典型相关分析(Canonical Correlation Analysis,CCA)的思想,采用以样本的类标号形式给出的先验信息,考虑样本数据的局部性,提出了一种监督的基于Fisher判别信息的局部保持多投影向量分析方法(Locality Preserving Multi-projection Vector Fisher Discriminant Analysis,LPMVF).通过定义新准则,LPMVF具有以下优点:(1)便于计算,可有效避免奇异性;(2)借助标准核映射,可快速将LPMVF推广到非线性的特征空间;(3)与CCA算法类似,LPMVF最终得到一对投影变换,可有效嵌入样本数据,可将原始数据投影成一系列"有用的"特征形式,并使数据的投影在嵌入空间中更具可分离性;(4)与局部化的Fisher判别分析(Local Fisher Discriminant Analysis,简称LFDA)相比,LPMVF也能够有效保持数据样本间的局部近邻关系;(5)在大多数情况下,该文算法的学习能力甚至优于经典的FDA、KFD和LFDA算法.在几个标准数据集上的实验结果表明,LPMVF及其非线性的推广算法能够提取出描述能力更强的特征信息,可有效利用类标号监督信息提高分类性能. 展开更多
关键词 局部保持 多投影向量 特征选择 分类 判别分析
下载PDF
基于二维局部保留映射的小样本掌纹识别 被引量:4
10
作者 潘新 阮秋琦 《计算机工程与应用》 CSCD 北大核心 2008年第30期30-32,共3页
小样本生物识别是现实应用中一个较难解决的问题,通过有限训练样本很难得到满意的识别结果。因此,提出了一种新的小样本掌纹识别方法,利用改进的二维局部保留映射(I2DLPP)提取特征,并用支持向量机(SVM)分类。改进的二维局部保留映射是... 小样本生物识别是现实应用中一个较难解决的问题,通过有限训练样本很难得到满意的识别结果。因此,提出了一种新的小样本掌纹识别方法,利用改进的二维局部保留映射(I2DLPP)提取特征,并用支持向量机(SVM)分类。改进的二维局部保留映射是通过同时在行和列方向上进行2DPCA和2DLPP的投影实现的,从而降低了计算复杂度与特征维数;并且构建最近邻图是以图像内部的列为节点,保留更多内部流形结构,改善了识别效果。SVM是针对小样本识别的非常有效的分类工具,将两者结合可以显著提高小样本掌纹识别精度。实验结果证明了该方法的有效性。 展开更多
关键词 二维局部保留映射 支持向量机 小样本 掌纹识别
下载PDF
基于局部保持映射的图像隐密检测算法 被引量:1
11
作者 张敏情 苏光伟 杨晓元 《计算机工程与应用》 CSCD 北大核心 2009年第33期162-164,共3页
提出了一种新的基于局部保持映射(Locality Preserving Projections,LPP)降维的图像隐密检测方案。为降低图像特征向量的维数,同时保持其内在低维结构,方便构造更有效的分类器,在经过小波变换形成图像特征后,利用LPP算法得到图像特征集... 提出了一种新的基于局部保持映射(Locality Preserving Projections,LPP)降维的图像隐密检测方案。为降低图像特征向量的维数,同时保持其内在低维结构,方便构造更有效的分类器,在经过小波变换形成图像特征后,利用LPP算法得到图像特征集的低维流形,实现对图像高维特征的降维。进而使用支持向量机(SVM)算法将降维后的特征映射到分类特征空间,实现对正常图像和隐密图像分类。实验结果表明,与不采用降维算法的检测方案相比,提出的方案能够显著地提高检测的准确率。 展开更多
关键词 隐密检测 局部保持映射 支持向量机
下载PDF
基于生物启发特征的真实环境笑脸分类方法 被引量:2
12
作者 陈俊 《计算机工程》 CAS CSCD 北大核心 2011年第18期198-200,共3页
为解决生物启发模型(BIM)存在的3个问题,即高计算复杂度、有争议的视觉皮层关系建模,以及类前向反馈机制带来的盲目特征选择,提出一种基于生物启发特征(BIF)的真实环境笑脸分类方法。构建基于BIF的笑脸分类系统,提取人脸表情图像嘴部区... 为解决生物启发模型(BIM)存在的3个问题,即高计算复杂度、有争议的视觉皮层关系建模,以及类前向反馈机制带来的盲目特征选择,提出一种基于生物启发特征(BIF)的真实环境笑脸分类方法。构建基于BIF的笑脸分类系统,提取人脸表情图像嘴部区域的金字塔梯度方向直方图特征,使用局部保持投影进行BIM特征降维,采用Adaboost算法进行BIM特征选择。实验结果验证,该系统的最佳识别率达96.5%。 展开更多
关键词 笑脸表情分类 生物启发特征 金字塔梯度方向直方图特征 局部保持投影 支持向量机
下载PDF
基于改进LPP和ECOC-SVMS的离线签名识别方法 被引量:1
13
作者 蒋青云 《计算机与现代化》 2018年第10期74-78,共5页
提出一种基于改进LPP和ECOC-SVMS的离线签名识别方法。针对预处理后的签名图像,选择多种有效特征构建高维特征向量,引入一种改进的保局投影方法进行特征提取并同时实现高效降维;签名识别方面,使用基于Hadamard纠错编码方法的ECOC支持向... 提出一种基于改进LPP和ECOC-SVMS的离线签名识别方法。针对预处理后的签名图像,选择多种有效特征构建高维特征向量,引入一种改进的保局投影方法进行特征提取并同时实现高效降维;签名识别方面,使用基于Hadamard纠错编码方法的ECOC支持向量机多类分类方法,并引入近似概率对ECOC解码进行改进,以提升多类分类器的性能。实验结果表明此方法的可行性和有效性。 展开更多
关键词 离线签名识别 保局投影 纠错编码支持向量机
下载PDF
一种基于带监督局部保持投影的多模型软测量建模方法
14
作者 张文清 杨慧中 《华东理工大学学报(自然科学版)》 CAS CSCD 北大核心 2012年第6期724-728,共5页
针对化工生产过程中软测量模型估计精度的问题,提出了一种基于多知识库挖掘理论的带监督的局部保持投影(SLPP)方法。该方法用SLPP算法对输入数据空间进行类与类之间的降维,得到不同的类别转换矩阵和不同的类别多知识库,最后融合支持向... 针对化工生产过程中软测量模型估计精度的问题,提出了一种基于多知识库挖掘理论的带监督的局部保持投影(SLPP)方法。该方法用SLPP算法对输入数据空间进行类与类之间的降维,得到不同的类别转换矩阵和不同的类别多知识库,最后融合支持向量机自适应地实现组合建模。仿真结果表明:该建模方法用于双酚A含量的软测量建模中,较传统多模型方法可以更加合理地加权得到子模型,提高了模型估计精度,具有更强的泛化能力。 展开更多
关键词 软测量 组合模型 SLPP 支持向量机 多知识库
下载PDF
基于局部保序降维的SVDD故障检测方法
15
作者 谢彦红 薛志强 李元 《沈阳化工大学学报》 CAS 2022年第1期60-68,共9页
针对SVDD方法在训练阶段计算量大、训练时间久的问题,提出了基于局部保持投影支持向量数据描述(LPP-SVDD)的故障检测方法.结合LPP处理线性降维和SVDD在异常点检测的优势,使用LPP算法对原始数据进行维数约减,对降维后的数据采用SVDD算法... 针对SVDD方法在训练阶段计算量大、训练时间久的问题,提出了基于局部保持投影支持向量数据描述(LPP-SVDD)的故障检测方法.结合LPP处理线性降维和SVDD在异常点检测的优势,使用LPP算法对原始数据进行维数约减,对降维后的数据采用SVDD算法建立监控模型,在最大程度保留数据局部结构特性的同时达到数据维数约减的目的,从而降低SVDD的计算量,缩短建模及检测时间.通过数值例子和半导体工艺过程进行仿真研究,对比LPP、k NN、SVDD、LPP-SVDD方法,验证所提方法的性能.结果证实了LPP-SVDD不仅具有准确的检测能力,而且具有较高的检测效率. 展开更多
关键词 维数约减 局部保持投影 支持向量数据描述 半导体工艺过程 故障检测
下载PDF
基于SVM和归一化技术的音视频特征融合身份识别
16
作者 丁辉 安今朝 《电气自动化》 2012年第3期88-90,共3页
针对噪声环境下人脸识别率和说话人识别率低的问题,在研究特征层融合的基础上,结合归一化技术和SVM理论,提出了一种融合人脸和语音的多生物特征识别模型。首先采用离散余弦变换和局部保持投影算法提取人脸特征及SVM方法提取语音特征,在... 针对噪声环境下人脸识别率和说话人识别率低的问题,在研究特征层融合的基础上,结合归一化技术和SVM理论,提出了一种融合人脸和语音的多生物特征识别模型。首先采用离散余弦变换和局部保持投影算法提取人脸特征及SVM方法提取语音特征,在特征层进行融合得到融合特征后,计算测试身份与模板间的距离,为了减少计算量和提高识别性能,对匹配距离进行归一化处理,最后输入到SVM进行识别。仿真结果表明,在噪声环境下,当信噪比降低时,融合识别率要明显高于单个系统的识别率,达到了身份识别的目的。 展开更多
关键词 支持向量机 归一化 局部保持投影 特征融合
下载PDF
基于保局投影的离线签名识别 被引量:5
17
作者 戴斯荻 夏利民 《计算机工程与应用》 CSCD 北大核心 2010年第1期190-193,共4页
针对离线签名识别中的特征提取问题,提出了一种基于保局投影的签名识别方法。该方法首先对签名图像进行形状特征、伪动态特征和纹理特征的提取;然后采用保局投影得到更具判别性的特征;最后运用支持向量机进行分类识别。实验表明该方法... 针对离线签名识别中的特征提取问题,提出了一种基于保局投影的签名识别方法。该方法首先对签名图像进行形状特征、伪动态特征和纹理特征的提取;然后采用保局投影得到更具判别性的特征;最后运用支持向量机进行分类识别。实验表明该方法不但能有效地降低特征空间的维数,而且能使分类准确率得到显著提高。 展开更多
关键词 签名识别 特征提取 保局投影 支持向量机
下载PDF
基于NSCT和M-PCNN的人脸特征提取 被引量:4
18
作者 杨光 王晅 +1 位作者 徐鹏 陈丹丹 《计算机工程》 CAS CSCD 2012年第22期151-153,158,共4页
为提高人脸识别对人脸姿态、位置、表情变化的鲁棒性,提出一种基于非下采样Contourlet变换(NSCT)与改进脉冲耦合神经网络(M-PCNN)的人脸特征提取方法。利用NSCT对输入图像进行多尺度分解和多方向稀疏分解,以捕获图像中的高维奇异信息,使... 为提高人脸识别对人脸姿态、位置、表情变化的鲁棒性,提出一种基于非下采样Contourlet变换(NSCT)与改进脉冲耦合神经网络(M-PCNN)的人脸特征提取方法。利用NSCT对输入图像进行多尺度分解和多方向稀疏分解,以捕获图像中的高维奇异信息,使用M-PCNN模型提取各子带的信息熵,将其作为人脸特征,利用支持向量机(SVM)实现分类与识别。仿真结果表明,该方法鲁棒性较强,在识别和分类中表现出较好的性能。 展开更多
关键词 人脸识别 主成分分析 保局投影 特征提取 信息熵 支持向量机
下载PDF
正交拉普拉斯语种识别方法 被引量:3
19
作者 杨绪魁 屈丹 张文林 《自动化学报》 EI CSCD 北大核心 2014年第8期1812-1818,共7页
提出了一种正交拉普拉斯语种识别方法,即在提取语音的i-vector后,采用正交局部保持投影进行子空间映射,将信号整体空间映射到语言信息加信道信息子空间,然后对映射后的矢量进行信道补偿处理,最后用支持向量机进行识别.尽管i-vector最大... 提出了一种正交拉普拉斯语种识别方法,即在提取语音的i-vector后,采用正交局部保持投影进行子空间映射,将信号整体空间映射到语言信息加信道信息子空间,然后对映射后的矢量进行信道补偿处理,最后用支持向量机进行识别.尽管i-vector最大限度地保留了语音的声学信息,但是并没有发现这些信息之间的内在结构.利用正交局部保持投影在去除声学无关信息的基础上,进一步发现声学特征的内在结构,能够有效地提高特征的区分性.在对NIST LRE 2003测试数据库实验后,发现新方法相较于基线系统来说,平均代价降低了28.91%. 展开更多
关键词 因子分析 辨识矢量 流形学习 正交局部保持投影 语种识别
下载PDF
基于Curvelet及LPP的人脸识别算法
20
作者 卢世军 《现代计算机》 2013年第23期30-33,共4页
基于人脸图像的曲线奇异性及高维图像数据带来的计算复杂性,提出一种结合Curvelet变换与LPP的人脸识别方法。首先通过Curvelet变换对人脸图像降维,利用LPP将图像投影到最优子空间中,利用支持向量机进行分类识别,实验结果表明该算法的识... 基于人脸图像的曲线奇异性及高维图像数据带来的计算复杂性,提出一种结合Curvelet变换与LPP的人脸识别方法。首先通过Curvelet变换对人脸图像降维,利用LPP将图像投影到最优子空间中,利用支持向量机进行分类识别,实验结果表明该算法的识别效果优于小波变换结合LPP方法、LPP方法。 展开更多
关键词 人脸识别 CURVELET LPP 支持向量机
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部