This paper provides a study on the stability and time-step constraints of solving the linearized Korteweg-de Vries(KdV)equation,using implicit-explicit(IMEX)Runge-Kutta(RK)time integration methods combined with either...This paper provides a study on the stability and time-step constraints of solving the linearized Korteweg-de Vries(KdV)equation,using implicit-explicit(IMEX)Runge-Kutta(RK)time integration methods combined with either finite difference(FD)or local discontinuous Galerkin(DG)spatial discretization.We analyze the stability of the fully discrete scheme,on a uniform mesh with periodic boundary conditions,using the Fourier method.For the linearized KdV equation,the IMEX schemes are stable under the standard Courant-Friedrichs-Lewy(CFL)conditionτ≤λh.Here,λis the CFL number,τis the time-step size,and h is the spatial mesh size.We study several IMEX schemes and characterize their CFL number as a function ofθ=d/h^(2)with d being the dispersion coefficient,which leads to several interesting observations.We also investigate the asymptotic behaviors of the CFL number for sufficiently refined meshes and derive the necessary conditions for the asymptotic stability of the IMEX-RK methods.Some numerical experiments are provided in the paper to illustrate the performance of IMEX methods under different time-step constraints.展开更多
Due to the coupling between the hydrodynamic equation and the phase-field equation in two-phase incompressible flows,it is desirable to develop efficient and high-order accurate numerical schemes that can decouple the...Due to the coupling between the hydrodynamic equation and the phase-field equation in two-phase incompressible flows,it is desirable to develop efficient and high-order accurate numerical schemes that can decouple these two equations.One popular and efficient strategy is to add an explicit stabilizing term to the convective velocity in the phase-field equation to decouple them.The resulting schemes are only first-order accurate in time,and it seems extremely difficult to generalize the idea of stabilization to the second-order or higher version.In this paper,we employ the spectral deferred correction method to improve the temporal accuracy,based on the first-order decoupled and energy-stable scheme constructed by the stabilization idea.The novelty lies in how the decoupling and linear implicit properties are maintained to improve the efficiency.Within the framework of the spatially discretized local discontinuous Galerkin method,the resulting numerical schemes are fully decoupled,efficient,and high-order accurate in both time and space.Numerical experiments are performed to validate the high-order accuracy and efficiency of the methods for solving phase-field models of two-phase incompressible flows.展开更多
This study examines the multicriteria scheduling problem on a single machine to minimize three criteria: the maximum cost function, denoted by maximum late work (V<sub>max</sub>), maximum tardy job, denote...This study examines the multicriteria scheduling problem on a single machine to minimize three criteria: the maximum cost function, denoted by maximum late work (V<sub>max</sub>), maximum tardy job, denoted by (T<sub>max</sub>), and maximum earliness (E<sub>max</sub>). We propose several algorithms based on types of objectives function to be optimized when dealing with simultaneous minimization problems with and without weight and hierarchical minimization problems. The proposed Algorithm (3) is to find the set of efficient solutions for 1//F (V<sub>max</sub>, T<sub>max</sub>, E<sub>max</sub>) and 1//(V<sub>max</sub> + T<sub>max</sub> + E<sub>max</sub>). The Local Search Heuristic Methods (Descent Method (DM), Simulated Annealing (SA), Genetic Algorithm (GA), and the Tree Type Heuristics Method (TTHM) are applied to solve all suggested problems. Finally, the experimental results of Algorithm (3) are compared with the results of the Branch and Bound (BAB) method for optimal and Pareto optimal solutions for smaller instance sizes and compared to the Local Search Heuristic Methods for large instance sizes. These results ensure the efficiency of Algorithm (3) in a reasonable time.展开更多
Boussinesq type equations have been widely studied to model the surface water wave.In this paper,we consider the abcd Boussinesq system which is a family of Boussinesq type equations including many well-known models s...Boussinesq type equations have been widely studied to model the surface water wave.In this paper,we consider the abcd Boussinesq system which is a family of Boussinesq type equations including many well-known models such as the classical Boussinesq system,the BBM-BBM system,the Bona-Smith system,etc.We propose local discontinuous Galerkin(LDG)methods,with carefully chosen numerical fluxes,to numerically solve this abcd Boussinesq system.The main focus of this paper is to rigorously establish a priori error estimate of the proposed LDG methods for a wide range of the parameters a,b,c,d.Numerical experiments are shown to test the convergence rates,and to demonstrate that the proposed methods can simulate the head-on collision of traveling wave and finite time blow-up behavior well.展开更多
In this paper, we study the classical Allen-Cahn equations and investigate the maximum- principle-preserving (MPP) techniques. The Allen-Cahn equation has been widely used in mathematical models for problems in materi...In this paper, we study the classical Allen-Cahn equations and investigate the maximum- principle-preserving (MPP) techniques. The Allen-Cahn equation has been widely used in mathematical models for problems in materials science and fluid dynamics. It enjoys the energy stability and the maximum-principle. Moreover, it is well known that the Allen- Cahn equation may yield thin interface layer, and nonuniform meshes might be useful in the numerical solutions. Therefore, we apply the local discontinuous Galerkin (LDG) method due to its flexibility on h-p adaptivity and complex geometry. However, the MPP LDG methods require slope limiters, then the energy stability may not be easy to obtain. In this paper, we only discuss the MPP technique and use numerical experiments to dem-onstrate the energy decay property. Moreover, due to the stiff source given in the equation, we use the conservative modified exponential Runge-Kutta methods and thus can use rela-tively large time step sizes. Thanks to the conservative time integration, the bounds of the unknown function will not decay. Numerical experiments will be given to demonstrate the good performance of the MPP LDG scheme.展开更多
In this paper, a fully third-order accurate projection method for solving the incompressible Navier-Stokes equations is proposed. To construct the scheme, a continuous projection procedure is firstly presented. We the...In this paper, a fully third-order accurate projection method for solving the incompressible Navier-Stokes equations is proposed. To construct the scheme, a continuous projection procedure is firstly presented. We then derive a sufficient condition for the continuous projection equations to be temporally third-order accurate approximations of the original Navier-Stokes equations by means of the localtruncation-error-analysis technique. The continuous projection equations are discretized temporally and spatially to third-order accuracy on the staggered grids, resulting in a fully third-order discrete projection scheme. The possibility to design higher-order projection methods is thus demonstrated in the present paper. A heuristic stability analysis is performed on this projection method showing the probability of its being stable. The stability of the present scheme is further verified through numerical tests. The third-order accuracy of the present projection method is validated by several numerical test cases.展开更多
The purpose of this paper is to propose and study local spline approximation methods for singular product integration,for which;i)the precision degree is the highest possible using splint approximation; ii) the nodes ...The purpose of this paper is to propose and study local spline approximation methods for singular product integration,for which;i)the precision degree is the highest possible using splint approximation; ii) the nodes fan be assumed equal to arbitrary points,where the integrand function f is known; iii) the number of the requested evaluations of f at the nodes is low,iv) a satisfactory convergence theory can be proved.展开更多
In this paper,we develop novel local discontinuous Galerkin(LDG)methods for fractional diffusion equations with non-smooth solutions.We consider such problems,for which the solutions are not smooth at boundary,and the...In this paper,we develop novel local discontinuous Galerkin(LDG)methods for fractional diffusion equations with non-smooth solutions.We consider such problems,for which the solutions are not smooth at boundary,and therefore the traditional LDG methods with piecewise polynomial solutions suffer accuracy degeneracy.The novel LDG methods utilize a solution information enriched basis,simulate the problem on a paired special mesh,and achieve optimal order of accuracy.We analyze the L2 stability and optimal error estimate in L2-norm.Finally,numerical examples are presented for validating the theoretical conclusions.展开更多
This paper first attempts to solve the transient heat conduction problem by combining the recently proposed local knot method(LKM)with the dual reciprocity method(DRM).Firstly,the temporal derivative is discretized by...This paper first attempts to solve the transient heat conduction problem by combining the recently proposed local knot method(LKM)with the dual reciprocity method(DRM).Firstly,the temporal derivative is discretized by a finite difference scheme,and thus the governing equation of transient heat transfer is transformed into a non-homogeneous modified Helmholtz equation.Secondly,the solution of the non-homogeneous modified Helmholtz equation is decomposed into a particular solution and a homogeneous solution.And then,the DRM and LKM are used to solve the particular solution of the non-homogeneous equation and the homogeneous solution of the modified Helmholtz equation,respectively.The LKM is a recently proposed local radial basis function collocationmethod with themerits of being simple,accurate,and free ofmesh and integration.Compared with the traditional domain-type and boundary-type schemes,the present coupling algorithm could be treated as a really good alternative for the analysis of transient heat conduction on high-dimensional and complicated domains.Numerical experiments,including two-and three-dimensional heat transfer models,demonstrated the effectiveness and accuracy of the new methodology.展开更多
In this paper,a local discontinuous Galerkin(LDG)scheme for the time-fractional diffusion equation is proposed and analyzed.The Caputo time-fractional derivative(of orderα,with 0<α<1)is approximated by a finit...In this paper,a local discontinuous Galerkin(LDG)scheme for the time-fractional diffusion equation is proposed and analyzed.The Caputo time-fractional derivative(of orderα,with 0<α<1)is approximated by a finite difference method with an accuracy of order3-α,and the space discretization is based on the LDG method.For the finite difference method,we summarize and supplement some previous work by others,and apply it to the analysis of the convergence and stability of the proposed scheme.The optimal error estimate is obtained in the L2norm,indicating that the scheme has temporal(3-α)th-order accuracy and spatial(k+1)th-order accuracy,where k denotes the highest degree of a piecewise polynomial in discontinuous finite element space.The numerical results are also provided to verify the accuracy and efficiency of the considered scheme.展开更多
This paper aims to numerically study the generalized time-fractional Burgers equation in two spatial dimensions using the L1/LDG method. Here the L1 scheme is used to approximate the time-fractional derivative, i.e., ...This paper aims to numerically study the generalized time-fractional Burgers equation in two spatial dimensions using the L1/LDG method. Here the L1 scheme is used to approximate the time-fractional derivative, i.e., Caputo derivative, while the local discontinuous Galerkin (LDG) method is used to discretize the spatial derivative. If the solution has strong temporal regularity, i.e., its second derivative with respect to time being right continuous, then the L1 scheme on uniform meshes (uniform L1 scheme) is utilized. If the solution has weak temporal regularity, i.e., its first and/or second derivatives with respect to time blowing up at the starting time albeit the function itself being right continuous at the beginning time, then the L1 scheme on non-uniform meshes (non-uniform L1 scheme) is applied. Then both uniform L1/LDG and non-uniform L1/LDG schemes are constructed. They are both numerically stable and the \(L^2\) optimal error estimate for the velocity is obtained. Numerical examples support the theoretical analysis.展开更多
In this paper,by designing a normalized nonmonotone search strategy with the BarzilaiBorwein-type step-size,a novel local minimax method(LMM),which is a globally convergent iterative method,is proposed and analyzed to...In this paper,by designing a normalized nonmonotone search strategy with the BarzilaiBorwein-type step-size,a novel local minimax method(LMM),which is a globally convergent iterative method,is proposed and analyzed to find multiple(unstable)saddle points of nonconvex functionals in Hilbert spaces.Compared to traditional LMMs with monotone search strategies,this approach,which does not require strict decrease of the objective functional value at each iterative step,is observed to converge faster with less computations.Firstly,based on a normalized iterative scheme coupled with a local peak selection that pulls the iterative point back onto the solution submanifold,by generalizing the Zhang-Hager(ZH)search strategy in the optimization theory to the LMM framework,a kind of normalized ZH-type nonmonotone step-size search strategy is introduced,and then a novel nonmonotone LMM is constructed.Its feasibility and global convergence results are rigorously carried out under the relaxation of the monotonicity for the functional at the iterative sequences.Secondly,in order to speed up the convergence of the nonmonotone LMM,a globally convergent Barzilai-Borwein-type LMM(GBBLMM)is presented by explicitly constructing the Barzilai-Borwein-type step-size as a trial step-size of the normalized ZH-type nonmonotone step-size search strategy in each iteration.Finally,the GBBLMM algorithm is implemented to find multiple unstable solutions of two classes of semilinear elliptic boundary value problems with variational structures:one is the semilinear elliptic equations with the homogeneous Dirichlet boundary condition and another is the linear elliptic equations with semilinear Neumann boundary conditions.Extensive numerical results indicate that our approach is very effective and speeds up the LMMs significantly.展开更多
In[20],a semi-implicit spectral deferred correction(SDC)method was proposed,which is efficient for highly nonlinear partial differential equations(PDEs).The semi-implicit SDC method in[20]is based on first-order time ...In[20],a semi-implicit spectral deferred correction(SDC)method was proposed,which is efficient for highly nonlinear partial differential equations(PDEs).The semi-implicit SDC method in[20]is based on first-order time integration methods,which are corrected iteratively,with the order of accuracy increased by one for each additional iteration.In this paper,we will develop a class of semi-implicit SDC methods,which are based on second-order time integration methods and the order of accuracy are increased by two for each additional iteration.For spatial discretization,we employ the local discontinuous Galerkin(LDG)method to arrive at fully-discrete schemes,which are high-order accurate in both space and time.Numerical experiments are presented to demonstrate the accuracy,efficiency and robustness of the proposed semi-implicit SDC methods for solving complex nonlinear PDEs.展开更多
In this paper,two fully-discrete local discontinuous Galerkin(LDG)methods are applied to the growth-mediated autochemotactic pattern formation model in self-propelling bacteria.The numerical methods are linear and dec...In this paper,two fully-discrete local discontinuous Galerkin(LDG)methods are applied to the growth-mediated autochemotactic pattern formation model in self-propelling bacteria.The numerical methods are linear and decoupled,which greatly improve the computational efficiency.In order to resolve the time level mismatch of the discretization process,a special time marching method with high-order accuracy is constructed.Under the condition of slight time step constraints,the optimal error estimates of this method are given.Moreover,the theoretical results are verified by numerical experiments.Real simulations show the patterns of spots,rings,stripes as well as inverted spots because of the interplay of chemotactic drift and growth rate of the cells.展开更多
To study the association of oxytocin (OT)'s distribution in hypothalamatic,pituitary and ovary,and understand how the OT secrete releasing in hypothalamus,pituitary and ovaries,the paraffin section immunohistochem...To study the association of oxytocin (OT)'s distribution in hypothalamatic,pituitary and ovary,and understand how the OT secrete releasing in hypothalamus,pituitary and ovaries,the paraffin section immunohistochemistry SuperPicTureTM two step method was used to detect the distribution of OT in hypothalamatic-pituitary-ovary axis of five femal Guangxi local buffalo. The test results could provide morphology according to study the OT's synthesis and mechanism of action,and could play reference and directions part in breeding Guangxi local buffalo. The test results display:oxytocin immuno reactive (OT-IR) neuronsw eremainly distributed arcuate nucleus,supraoptic nucleus and paraventricular nucleus,and OT-IR neurons was also found in ventromedial nucleus,ventrolateralis nucleus,suprachiasmaticus nucleus,dorsomedial nucleus,mamillary body,anterior hypothalamic nucleus and so on. The OT immunoactive production was found in pituitary and few OT-IR nerve fibers extended to post pituitary from hypophyseal stalk and medium eminence. In ovaries,OT immunoactive productions were only distributed in germinal epithelium cells,granulosa cells and lutein cells. The OT was first discovered in singulorum link of hypothalamatic-pituitary-ovary axis of Guangxi local buffalo. The OT immunoactive neurons were first discovered in every main nucleus of Guangxi local buffalo hypothalamus,especially distributed in arcuate nucleus,supraoptic nucleus and paraventricular nucleus.展开更多
This paper presents an improved approach based on the equivalent-weights particle filter(EWPF)that uses the proposal density to effectively improve the traditional particle filter.The proposed approach uses historical...This paper presents an improved approach based on the equivalent-weights particle filter(EWPF)that uses the proposal density to effectively improve the traditional particle filter.The proposed approach uses historical data to calculate statistical observations instead of the future observations used in the EWPF’s proposal density and draws on the localization scheme used in the localized PF(LPF)to construct the localized EWPF.The new approach is called the statistical observation localized EWPF(LEWPF-Sobs);it uses statistical observations that are better adapted to the requirements of real-time assimilation and the localization function is used to calculate weights to reduce the effect of missing observations on the weights.This approach not only retains the advantages of the EWPF,but also improves the assimilation quality when using sparse observations.Numerical experiments performed with the Lorenz 96 model show that the statistical observation EWPF is better than the EWPF and EAKF when the model uses standard distribution observations.Comparisons of the statistical observation localized EWPF and LPF reveal the advantages of the new method,with fewer particles giving better results.In particular,the new improved filter performs better than the traditional algorithms when the observation network contains densely spaced measurements associated with model state nonlinearities.展开更多
Nonlinear formulations of the meshless local Petrov-Galerkin (MLPG) method are presented for geometrically nonlinear problems. The method requires no mesh in computation and therefore avoids mesh distortion difficul...Nonlinear formulations of the meshless local Petrov-Galerkin (MLPG) method are presented for geometrically nonlinear problems. The method requires no mesh in computation and therefore avoids mesh distortion difficulties in the large deformation analysis. The essential boundary conditions in the present formulation axe imposed by a penalty method. An incremental and iterative solution procedure is used to solve geometrically nonlinear problems. Several examples are presented to demonstrate the effectiveness of the method in geometrically nonlinear problems analysis. Numerical results show that the MLPG method is an effective one and that the values of the unknown variable are quite accurate.展开更多
A local pseudo arc-length method(LPALM)for solving hyperbolic conservation laws is presented in this paper.The key idea of this method comes from the original arc-length method,through which the critical points are ...A local pseudo arc-length method(LPALM)for solving hyperbolic conservation laws is presented in this paper.The key idea of this method comes from the original arc-length method,through which the critical points are bypassed by transforming the computational space.The method is based on local changes of physical variables to choose the discontinuous stencil and introduce the pseudo arc-length parameter,and then transform the governing equations from physical space to arc-length space.In order to solve these equations in arc-length coordinate,it is necessary to combine the velocity of mesh points in the moving mesh method,and then convert the physical variable in arclength space back to physical space.Numerical examples have proved the effectiveness and generality of the new approach for linear equation,nonlinear equation and system of equations with discontinuous initial values.Non-oscillation solution can be obtained by adjusting the parameter and the mesh refinement number for problems containing both shock and rarefaction waves.展开更多
In this article,a procedure for estimating the coefficient functions on the functional-coefficient regression models with different smoothing variables in different coefficient functions is defined.First step,by the l...In this article,a procedure for estimating the coefficient functions on the functional-coefficient regression models with different smoothing variables in different coefficient functions is defined.First step,by the local linear technique and the averaged method,the initial estimates of the coefficient functions are given.Second step,based on the initial estimates,the efficient estimates of the coefficient functions are proposed by a one-step back-fitting procedure.The efficient estimators share the same asymptotic normalities as the local linear estimators for the functional-coefficient models with a single smoothing variable in different functions.Two simulated examples show that the procedure is effective.展开更多
In this article, we introduce a coupled approach of local discontinuous Calerkin and standard finite element method for solving convection diffusion problems. The whole domain is divided into two disjoint subdomains. ...In this article, we introduce a coupled approach of local discontinuous Calerkin and standard finite element method for solving convection diffusion problems. The whole domain is divided into two disjoint subdomains. The discontinuous Galerkin method is adopted in the subdomain where the solution varies rapidly, while the standard finite element method is used in the other subdomain due to its lower computational cost. The stability and a priori error estimate are established. We prove that the coupled method has O(ε1/2 + h1/2)hk) convergence rate in an associated norm, where ε is the diffusion coefficient, h is the mesh size and k is the degree of polynomial. The numerical results verify our theoretical results. Moreover, 2k-order superconvergence of the numerical traces at the nodes, and the optimal convergence of the errors under L2 norm are observed numerically on the uniform mesh. The numerical results also indicate that the coupled method has the same convergence order and almost the same errors as the purely LDG method.展开更多
基金supported by the NSF under Grant DMS-2208391sponsored by the NSF under Grant DMS-1753581.
文摘This paper provides a study on the stability and time-step constraints of solving the linearized Korteweg-de Vries(KdV)equation,using implicit-explicit(IMEX)Runge-Kutta(RK)time integration methods combined with either finite difference(FD)or local discontinuous Galerkin(DG)spatial discretization.We analyze the stability of the fully discrete scheme,on a uniform mesh with periodic boundary conditions,using the Fourier method.For the linearized KdV equation,the IMEX schemes are stable under the standard Courant-Friedrichs-Lewy(CFL)conditionτ≤λh.Here,λis the CFL number,τis the time-step size,and h is the spatial mesh size.We study several IMEX schemes and characterize their CFL number as a function ofθ=d/h^(2)with d being the dispersion coefficient,which leads to several interesting observations.We also investigate the asymptotic behaviors of the CFL number for sufficiently refined meshes and derive the necessary conditions for the asymptotic stability of the IMEX-RK methods.Some numerical experiments are provided in the paper to illustrate the performance of IMEX methods under different time-step constraints.
基金supported by the NSFC Grant no.12271492the Natural Science Foundation of Henan Province of China Grant no.222300420550+1 种基金supported by the NSFC Grant no.12271498the National Key R&D Program of China Grant no.2022YFA1005202/2022YFA1005200.
文摘Due to the coupling between the hydrodynamic equation and the phase-field equation in two-phase incompressible flows,it is desirable to develop efficient and high-order accurate numerical schemes that can decouple these two equations.One popular and efficient strategy is to add an explicit stabilizing term to the convective velocity in the phase-field equation to decouple them.The resulting schemes are only first-order accurate in time,and it seems extremely difficult to generalize the idea of stabilization to the second-order or higher version.In this paper,we employ the spectral deferred correction method to improve the temporal accuracy,based on the first-order decoupled and energy-stable scheme constructed by the stabilization idea.The novelty lies in how the decoupling and linear implicit properties are maintained to improve the efficiency.Within the framework of the spatially discretized local discontinuous Galerkin method,the resulting numerical schemes are fully decoupled,efficient,and high-order accurate in both time and space.Numerical experiments are performed to validate the high-order accuracy and efficiency of the methods for solving phase-field models of two-phase incompressible flows.
文摘This study examines the multicriteria scheduling problem on a single machine to minimize three criteria: the maximum cost function, denoted by maximum late work (V<sub>max</sub>), maximum tardy job, denoted by (T<sub>max</sub>), and maximum earliness (E<sub>max</sub>). We propose several algorithms based on types of objectives function to be optimized when dealing with simultaneous minimization problems with and without weight and hierarchical minimization problems. The proposed Algorithm (3) is to find the set of efficient solutions for 1//F (V<sub>max</sub>, T<sub>max</sub>, E<sub>max</sub>) and 1//(V<sub>max</sub> + T<sub>max</sub> + E<sub>max</sub>). The Local Search Heuristic Methods (Descent Method (DM), Simulated Annealing (SA), Genetic Algorithm (GA), and the Tree Type Heuristics Method (TTHM) are applied to solve all suggested problems. Finally, the experimental results of Algorithm (3) are compared with the results of the Branch and Bound (BAB) method for optimal and Pareto optimal solutions for smaller instance sizes and compared to the Local Search Heuristic Methods for large instance sizes. These results ensure the efficiency of Algorithm (3) in a reasonable time.
基金The work of J.Sun and Y.Xing is partially sponsored by NSF grant DMS-1753581.
文摘Boussinesq type equations have been widely studied to model the surface water wave.In this paper,we consider the abcd Boussinesq system which is a family of Boussinesq type equations including many well-known models such as the classical Boussinesq system,the BBM-BBM system,the Bona-Smith system,etc.We propose local discontinuous Galerkin(LDG)methods,with carefully chosen numerical fluxes,to numerically solve this abcd Boussinesq system.The main focus of this paper is to rigorously establish a priori error estimate of the proposed LDG methods for a wide range of the parameters a,b,c,d.Numerical experiments are shown to test the convergence rates,and to demonstrate that the proposed methods can simulate the head-on collision of traveling wave and finite time blow-up behavior well.
基金Jie Du is supported by the National Natural Science Foundation of China under Grant Number NSFC 11801302Tsinghua University Initiative Scientific Research Program+1 种基金Eric Chung is supported by Hong Kong RGC General Research Fund(Projects 14304217 and 14302018)The third author is supported by the NSF grant DMS-1818467.
文摘In this paper, we study the classical Allen-Cahn equations and investigate the maximum- principle-preserving (MPP) techniques. The Allen-Cahn equation has been widely used in mathematical models for problems in materials science and fluid dynamics. It enjoys the energy stability and the maximum-principle. Moreover, it is well known that the Allen- Cahn equation may yield thin interface layer, and nonuniform meshes might be useful in the numerical solutions. Therefore, we apply the local discontinuous Galerkin (LDG) method due to its flexibility on h-p adaptivity and complex geometry. However, the MPP LDG methods require slope limiters, then the energy stability may not be easy to obtain. In this paper, we only discuss the MPP technique and use numerical experiments to dem-onstrate the energy decay property. Moreover, due to the stiff source given in the equation, we use the conservative modified exponential Runge-Kutta methods and thus can use rela-tively large time step sizes. Thanks to the conservative time integration, the bounds of the unknown function will not decay. Numerical experiments will be given to demonstrate the good performance of the MPP LDG scheme.
基金The project supported by the China NKBRSF(2001CB409604)
文摘In this paper, a fully third-order accurate projection method for solving the incompressible Navier-Stokes equations is proposed. To construct the scheme, a continuous projection procedure is firstly presented. We then derive a sufficient condition for the continuous projection equations to be temporally third-order accurate approximations of the original Navier-Stokes equations by means of the localtruncation-error-analysis technique. The continuous projection equations are discretized temporally and spatially to third-order accuracy on the staggered grids, resulting in a fully third-order discrete projection scheme. The possibility to design higher-order projection methods is thus demonstrated in the present paper. A heuristic stability analysis is performed on this projection method showing the probability of its being stable. The stability of the present scheme is further verified through numerical tests. The third-order accuracy of the present projection method is validated by several numerical test cases.
基金Work sponsored by"Ministero dell' University"CNR of Italy
文摘The purpose of this paper is to propose and study local spline approximation methods for singular product integration,for which;i)the precision degree is the highest possible using splint approximation; ii) the nodes fan be assumed equal to arbitrary points,where the integrand function f is known; iii) the number of the requested evaluations of f at the nodes is low,iv) a satisfactory convergence theory can be proved.
文摘In this paper,we develop novel local discontinuous Galerkin(LDG)methods for fractional diffusion equations with non-smooth solutions.We consider such problems,for which the solutions are not smooth at boundary,and therefore the traditional LDG methods with piecewise polynomial solutions suffer accuracy degeneracy.The novel LDG methods utilize a solution information enriched basis,simulate the problem on a paired special mesh,and achieve optimal order of accuracy.We analyze the L2 stability and optimal error estimate in L2-norm.Finally,numerical examples are presented for validating the theoretical conclusions.
基金supported by the NationalNatural Science Foundation of China (No.11802151)the Natural Science Foundation of Shandong Province of China (No.ZR2019BA008)the China Postdoctoral Science Foundation (No.2019M652315).
文摘This paper first attempts to solve the transient heat conduction problem by combining the recently proposed local knot method(LKM)with the dual reciprocity method(DRM).Firstly,the temporal derivative is discretized by a finite difference scheme,and thus the governing equation of transient heat transfer is transformed into a non-homogeneous modified Helmholtz equation.Secondly,the solution of the non-homogeneous modified Helmholtz equation is decomposed into a particular solution and a homogeneous solution.And then,the DRM and LKM are used to solve the particular solution of the non-homogeneous equation and the homogeneous solution of the modified Helmholtz equation,respectively.The LKM is a recently proposed local radial basis function collocationmethod with themerits of being simple,accurate,and free ofmesh and integration.Compared with the traditional domain-type and boundary-type schemes,the present coupling algorithm could be treated as a really good alternative for the analysis of transient heat conduction on high-dimensional and complicated domains.Numerical experiments,including two-and three-dimensional heat transfer models,demonstrated the effectiveness and accuracy of the new methodology.
基金supported by the State Key Program of National Natural Science Foundation of China(11931003)the National Natural Science Foundation of China(41974133)。
文摘In this paper,a local discontinuous Galerkin(LDG)scheme for the time-fractional diffusion equation is proposed and analyzed.The Caputo time-fractional derivative(of orderα,with 0<α<1)is approximated by a finite difference method with an accuracy of order3-α,and the space discretization is based on the LDG method.For the finite difference method,we summarize and supplement some previous work by others,and apply it to the analysis of the convergence and stability of the proposed scheme.The optimal error estimate is obtained in the L2norm,indicating that the scheme has temporal(3-α)th-order accuracy and spatial(k+1)th-order accuracy,where k denotes the highest degree of a piecewise polynomial in discontinuous finite element space.The numerical results are also provided to verify the accuracy and efficiency of the considered scheme.
基金the National Natural Science Foundation of China(Nos.11671251 and 12101266).
文摘This paper aims to numerically study the generalized time-fractional Burgers equation in two spatial dimensions using the L1/LDG method. Here the L1 scheme is used to approximate the time-fractional derivative, i.e., Caputo derivative, while the local discontinuous Galerkin (LDG) method is used to discretize the spatial derivative. If the solution has strong temporal regularity, i.e., its second derivative with respect to time being right continuous, then the L1 scheme on uniform meshes (uniform L1 scheme) is utilized. If the solution has weak temporal regularity, i.e., its first and/or second derivatives with respect to time blowing up at the starting time albeit the function itself being right continuous at the beginning time, then the L1 scheme on non-uniform meshes (non-uniform L1 scheme) is applied. Then both uniform L1/LDG and non-uniform L1/LDG schemes are constructed. They are both numerically stable and the \(L^2\) optimal error estimate for the velocity is obtained. Numerical examples support the theoretical analysis.
基金supported by the NSFC(Grant Nos.12171148,11771138)the NSFC(Grant Nos.12101252,11971007)+2 种基金the NSFC(Grant No.11901185)the National Key R&D Program of China(Grant No.2021YFA1001300)by the Fundamental Research Funds for the Central Universities(Grant No.531118010207).
文摘In this paper,by designing a normalized nonmonotone search strategy with the BarzilaiBorwein-type step-size,a novel local minimax method(LMM),which is a globally convergent iterative method,is proposed and analyzed to find multiple(unstable)saddle points of nonconvex functionals in Hilbert spaces.Compared to traditional LMMs with monotone search strategies,this approach,which does not require strict decrease of the objective functional value at each iterative step,is observed to converge faster with less computations.Firstly,based on a normalized iterative scheme coupled with a local peak selection that pulls the iterative point back onto the solution submanifold,by generalizing the Zhang-Hager(ZH)search strategy in the optimization theory to the LMM framework,a kind of normalized ZH-type nonmonotone step-size search strategy is introduced,and then a novel nonmonotone LMM is constructed.Its feasibility and global convergence results are rigorously carried out under the relaxation of the monotonicity for the functional at the iterative sequences.Secondly,in order to speed up the convergence of the nonmonotone LMM,a globally convergent Barzilai-Borwein-type LMM(GBBLMM)is presented by explicitly constructing the Barzilai-Borwein-type step-size as a trial step-size of the normalized ZH-type nonmonotone step-size search strategy in each iteration.Finally,the GBBLMM algorithm is implemented to find multiple unstable solutions of two classes of semilinear elliptic boundary value problems with variational structures:one is the semilinear elliptic equations with the homogeneous Dirichlet boundary condition and another is the linear elliptic equations with semilinear Neumann boundary conditions.Extensive numerical results indicate that our approach is very effective and speeds up the LMMs significantly.
基金supported by NSFC(Grant No.11601490).Research of Y.Xu is supported by NSFC(Grant No.12071455).
文摘In[20],a semi-implicit spectral deferred correction(SDC)method was proposed,which is efficient for highly nonlinear partial differential equations(PDEs).The semi-implicit SDC method in[20]is based on first-order time integration methods,which are corrected iteratively,with the order of accuracy increased by one for each additional iteration.In this paper,we will develop a class of semi-implicit SDC methods,which are based on second-order time integration methods and the order of accuracy are increased by two for each additional iteration.For spatial discretization,we employ the local discontinuous Galerkin(LDG)method to arrive at fully-discrete schemes,which are high-order accurate in both space and time.Numerical experiments are presented to demonstrate the accuracy,efficiency and robustness of the proposed semi-implicit SDC methods for solving complex nonlinear PDEs.
基金supported by National Natural Science Foundation of China(Grant No.11801569)Natural Science Foundation of Shandong Province(CN)(Grant No.ZR2021MA001)the Fundamental Research Funds for the Central Universities(Grant Nos.22CX03025A and 22CX03020A).
文摘In this paper,two fully-discrete local discontinuous Galerkin(LDG)methods are applied to the growth-mediated autochemotactic pattern formation model in self-propelling bacteria.The numerical methods are linear and decoupled,which greatly improve the computational efficiency.In order to resolve the time level mismatch of the discretization process,a special time marching method with high-order accuracy is constructed.Under the condition of slight time step constraints,the optimal error estimates of this method are given.Moreover,the theoretical results are verified by numerical experiments.Real simulations show the patterns of spots,rings,stripes as well as inverted spots because of the interplay of chemotactic drift and growth rate of the cells.
基金Supported by Guangxi Scientific Fund Project (Guikezi0991042, Guikezi 0640015 and Guikezi 0832043)Guangxi Area Education Department Educational and Scientific Layout Project (C, 2006C3)+1 种基金Guangxi Education Department Scientific Research Fund (200709LX075)Guangxi Large Apparatus Collaborated Sharing Net~~
文摘To study the association of oxytocin (OT)'s distribution in hypothalamatic,pituitary and ovary,and understand how the OT secrete releasing in hypothalamus,pituitary and ovaries,the paraffin section immunohistochemistry SuperPicTureTM two step method was used to detect the distribution of OT in hypothalamatic-pituitary-ovary axis of five femal Guangxi local buffalo. The test results could provide morphology according to study the OT's synthesis and mechanism of action,and could play reference and directions part in breeding Guangxi local buffalo. The test results display:oxytocin immuno reactive (OT-IR) neuronsw eremainly distributed arcuate nucleus,supraoptic nucleus and paraventricular nucleus,and OT-IR neurons was also found in ventromedial nucleus,ventrolateralis nucleus,suprachiasmaticus nucleus,dorsomedial nucleus,mamillary body,anterior hypothalamic nucleus and so on. The OT immunoactive production was found in pituitary and few OT-IR nerve fibers extended to post pituitary from hypophyseal stalk and medium eminence. In ovaries,OT immunoactive productions were only distributed in germinal epithelium cells,granulosa cells and lutein cells. The OT was first discovered in singulorum link of hypothalamatic-pituitary-ovary axis of Guangxi local buffalo. The OT immunoactive neurons were first discovered in every main nucleus of Guangxi local buffalo hypothalamus,especially distributed in arcuate nucleus,supraoptic nucleus and paraventricular nucleus.
基金The National Basic Research Program of China under contract Nos 2017YFC1404100,2017YFC1404103 and 2017YFC1404104the National Natural Science Foundation of China under contract No.41676088。
文摘This paper presents an improved approach based on the equivalent-weights particle filter(EWPF)that uses the proposal density to effectively improve the traditional particle filter.The proposed approach uses historical data to calculate statistical observations instead of the future observations used in the EWPF’s proposal density and draws on the localization scheme used in the localized PF(LPF)to construct the localized EWPF.The new approach is called the statistical observation localized EWPF(LEWPF-Sobs);it uses statistical observations that are better adapted to the requirements of real-time assimilation and the localization function is used to calculate weights to reduce the effect of missing observations on the weights.This approach not only retains the advantages of the EWPF,but also improves the assimilation quality when using sparse observations.Numerical experiments performed with the Lorenz 96 model show that the statistical observation EWPF is better than the EWPF and EAKF when the model uses standard distribution observations.Comparisons of the statistical observation localized EWPF and LPF reveal the advantages of the new method,with fewer particles giving better results.In particular,the new improved filter performs better than the traditional algorithms when the observation network contains densely spaced measurements associated with model state nonlinearities.
基金Project supported by the National 973 Program (No.2004CB719402), the National Natural Science Foundation of China (No. 10372030)the Open Research Projects supported by the Project Fund of the Hubei Province Key Lab of Mechanical Transmission & Manufacturing Engineering Wuhan University of Science & Technology (No.2003A16).
文摘Nonlinear formulations of the meshless local Petrov-Galerkin (MLPG) method are presented for geometrically nonlinear problems. The method requires no mesh in computation and therefore avoids mesh distortion difficulties in the large deformation analysis. The essential boundary conditions in the present formulation axe imposed by a penalty method. An incremental and iterative solution procedure is used to solve geometrically nonlinear problems. Several examples are presented to demonstrate the effectiveness of the method in geometrically nonlinear problems analysis. Numerical results show that the MLPG method is an effective one and that the values of the unknown variable are quite accurate.
基金supported by the National Natural Science Foundation of China(11390363 and 11172041)Beijing Higher Education Young Elite Teacher Project(YETP1190)
文摘A local pseudo arc-length method(LPALM)for solving hyperbolic conservation laws is presented in this paper.The key idea of this method comes from the original arc-length method,through which the critical points are bypassed by transforming the computational space.The method is based on local changes of physical variables to choose the discontinuous stencil and introduce the pseudo arc-length parameter,and then transform the governing equations from physical space to arc-length space.In order to solve these equations in arc-length coordinate,it is necessary to combine the velocity of mesh points in the moving mesh method,and then convert the physical variable in arclength space back to physical space.Numerical examples have proved the effectiveness and generality of the new approach for linear equation,nonlinear equation and system of equations with discontinuous initial values.Non-oscillation solution can be obtained by adjusting the parameter and the mesh refinement number for problems containing both shock and rarefaction waves.
文摘In this article,a procedure for estimating the coefficient functions on the functional-coefficient regression models with different smoothing variables in different coefficient functions is defined.First step,by the local linear technique and the averaged method,the initial estimates of the coefficient functions are given.Second step,based on the initial estimates,the efficient estimates of the coefficient functions are proposed by a one-step back-fitting procedure.The efficient estimators share the same asymptotic normalities as the local linear estimators for the functional-coefficient models with a single smoothing variable in different functions.Two simulated examples show that the procedure is effective.
基金Supported by National Natural Science Foundation of China (10571046, 10571053, and 10871066)Program for New Century Excellent Talents in University (NCET-06-0712)+2 种基金Key Laboratory of Computational and Stochastic Mathematics and Its Applications, Universities of Hunan Province, Hunan Normal Universitythe Project of Scientific Research Fund of Hunan Provincial Education Department (09K025)the Key Scientific Research Topic of Jiaxing University (70110X05BL)
文摘In this article, we introduce a coupled approach of local discontinuous Calerkin and standard finite element method for solving convection diffusion problems. The whole domain is divided into two disjoint subdomains. The discontinuous Galerkin method is adopted in the subdomain where the solution varies rapidly, while the standard finite element method is used in the other subdomain due to its lower computational cost. The stability and a priori error estimate are established. We prove that the coupled method has O(ε1/2 + h1/2)hk) convergence rate in an associated norm, where ε is the diffusion coefficient, h is the mesh size and k is the degree of polynomial. The numerical results verify our theoretical results. Moreover, 2k-order superconvergence of the numerical traces at the nodes, and the optimal convergence of the errors under L2 norm are observed numerically on the uniform mesh. The numerical results also indicate that the coupled method has the same convergence order and almost the same errors as the purely LDG method.