In the wireless localization application, multipath propagation seriously affects the localization accuracy. This paper presents two algorithms to solve the multipath problem. Firstly, we improve the Line of Possible ...In the wireless localization application, multipath propagation seriously affects the localization accuracy. This paper presents two algorithms to solve the multipath problem. Firstly, we improve the Line of Possible Mobile Device(LPMD) algorithm by optimizing the utilization of the direct paths for single-bound scattering scenario. Secondly, the signal path reckoning method with the assistance of geographic information system is proposed to solve the problem of localization with multi-bound scattering paths. With the building model's idealization, the proposed method refers to the idea of ray tracing and dead reckoning. According to the rule of wireless signal reflection, the signal propagation path is reckoned using the measurements of emission angle and propagation distance, and then the estimated location can be obtained. Simulation shows that the proposed method obtains better results than the existing geometric localization methods in multipath environment when the angle error is controlled.展开更多
Aiming at the dimension disaster problem, poor model generalization ability and deadlock problem in special obstacles environment caused by the increase of state information in the local path planning process of mobil...Aiming at the dimension disaster problem, poor model generalization ability and deadlock problem in special obstacles environment caused by the increase of state information in the local path planning process of mobile robot, this paper proposed a Double BP Q-learning algorithm based on the fusion of Double Q-learning algorithm and BP neural network. In order to solve the dimensional disaster problem, two BP neural network fitting value functions with the same network structure were used to replace the two <i>Q</i> value tables in Double Q-Learning algorithm to solve the problem that the <i>Q</i> value table cannot store excessive state information. By adding the mechanism of priority experience replay and using the parameter transfer to initialize the model parameters in different environments, it could accelerate the convergence rate of the algorithm, improve the learning efficiency and the generalization ability of the model. By designing specific action selection strategy in special environment, the deadlock state could be avoided and the mobile robot could reach the target point. Finally, the designed Double BP Q-learning algorithm was simulated and verified, and the probability of mobile robot reaching the target point in the parameter update process was compared with the Double Q-learning algorithm under the same condition of the planned path length. The results showed that the model trained by the improved Double BP Q-learning algorithm had a higher success rate in finding the optimal or sub-optimal path in the dense discrete environment, besides, it had stronger model generalization ability, fewer redundant sections, and could reach the target point without entering the deadlock zone in the special obstacles environment.展开更多
The forward-looking image sonar is a necessary vision device for Autonomous Underwater Vehicles (AUV). Based on the acoustic image received from forward-looking image sonar, AUV local path is planned. When the envir...The forward-looking image sonar is a necessary vision device for Autonomous Underwater Vehicles (AUV). Based on the acoustic image received from forward-looking image sonar, AUV local path is planned. When the environment model is made to adapt to local path planning, an iterative algorithm of binary conversion is used for image segmentation. Raw data of the acoustic image, which were received from serial port, are processed. By the use of "Mathematic Morphology" to filter noise, a mathematic model of environment for local path planning is established after coordinate transformation. The optimal path is searched by the distant transmission (Dt) algorithm. Simulation is conducted for the analysis of the algorithm. Experiment on the sea proves it reliable.展开更多
Conducting hydrodynamic and physical motion simulation tests using a large-scale self-propelled model under actual wave conditions is an important means for researching environmental adaptability of ships. During the ...Conducting hydrodynamic and physical motion simulation tests using a large-scale self-propelled model under actual wave conditions is an important means for researching environmental adaptability of ships. During the navigation test of the self-propelled model, the complex environment including various port facilities, navigation facilities, and the ships nearby must be considered carefully, because in this dense environment the impact of sea waves and winds on the model is particularly significant. In order to improve the security of the self-propelled model, this paper introduces the Q learning based on reinforcement learning combined with chaotic ideas for the model's collision avoidance, in order to improve the reliability of the local path planning. Simulation and sea test results show that this algorithm is a better solution for collision avoidance of the self navigation model under the interference of sea winds and waves with good adaptability.展开更多
This paper presents a development of a novel path planning algorithm, called Generalized Laser simulator (GLS), for solving the mobilerobot path planning problem in a two-dimensional map with the presence ofconstraint...This paper presents a development of a novel path planning algorithm, called Generalized Laser simulator (GLS), for solving the mobilerobot path planning problem in a two-dimensional map with the presence ofconstraints. This approach gives the possibility to find the path for a wheelmobile robot considering some constraints during the robot movement inboth known and unknown environments. The feasible path is determinedbetween the start and goal positions by generating wave of points in alldirection towards the goal point with adhering to constraints. In simulation,the proposed method has been tested in several working environments withdifferent degrees of complexity. The results demonstrated that the proposedmethod is able to generate efficiently an optimal collision-free path. Moreover,the performance of the proposed method was compared with the A-star andlaser simulator (LS) algorithms in terms of path length, computational timeand path smoothness. The results revealed that the proposed method hasshortest path length, less computational time and the best smooth path. Asan average, GLS is faster than A∗ and LS by 7.8 and 5.5 times, respectivelyand presents a path shorter than A∗ and LS by 1.2 and 1.5 times. In orderto verify the performance of the developed method in dealing with constraints, an experimental study was carried out using a Wheeled Mobile Robot(WMR) platform in labs and roads. The experimental work investigates acomplete autonomous WMR path planning in the lab and road environmentsusing a live video streaming. Local maps were built using data from a live video streaming with real-time image processing to detect segments of theanalogous-road in lab or real-road environments. The study shows that theproposed method is able to generate shortest path and best smooth trajectoryfrom start to goal points in comparison with laser simulator.展开更多
In order to solve the problem of path planning of tower cranes,an improved ant colony algorithm was proposed.Firstly,the tower crane was simplified into a three-degree-of-freedom mechanical arm,and the D-H motion mode...In order to solve the problem of path planning of tower cranes,an improved ant colony algorithm was proposed.Firstly,the tower crane was simplified into a three-degree-of-freedom mechanical arm,and the D-H motion model was established to solve the forward and inverse kinematic equations.Secondly,the traditional ant colony algorithm was improved.The heuristic function was improved by introducing the distance between the optional nodes and the target point into the function.Then the transition probability was improved by introducing the security factor of surrounding points into the transition probability.In addition,the local path chunking strategy was used to optimize the local multi-inflection path and reduce the local redundant inflection points.Finally,according to the position of the hook,the kinematic inversion of the tower crane was carried out,and the variables of each joint were obtained.More specifically,compared with the traditional ant colony algorithm,the simulation results showed that improved ant colony algorithm converged faster,shortened the optimal path length,and optimized the path quality in the simple and complex environment.展开更多
Missing link prediction provides significant instruction for both analysis of network structure and mining of unknown links in incomplete networks. Recently, many algorithms have been proposed based on various node-si...Missing link prediction provides significant instruction for both analysis of network structure and mining of unknown links in incomplete networks. Recently, many algorithms have been proposed based on various node-similarity measures. Among these measures, the common neighbour index, the resource allocation index, and the local path index, stemming from different source, have been proved to have relatively high accuracy and low computational effort. In this paper, we propose a similarity index by combining the resource allocation index and the local path index. Simulation results on six unweighted networks show that the accuracy of the proposed index is higher than that of the local path one. Based on the same idea of the present index, we develop its corresponding weighted version and test it on several weighted networks. It is found that, except for the USAir network, the weighted variant also performs better than both the weighted resource allocation index and the weighted local path index. Due to the improved accuracy and the still low computational complexity, the indices may be useful for link prediction.展开更多
The similarity property of conformal parameterization makes it able to locally preserve the shapes between a surface and its parameter domain, as opposed to common parameterization methods. A parametric tool path plan...The similarity property of conformal parameterization makes it able to locally preserve the shapes between a surface and its parameter domain, as opposed to common parameterization methods. A parametric tool path planning method is proposed in this paper through such parameterization of triangular meshes which is furthermore based on the geodesic on meshes. The parameterization has the properties of local similarity and free boundary which are exploited to simplify the formulas for computing path parameters, which play a fundamentally important role in tool path planning, and keep the path boundary-conformed and smooth. Experimental results are given to illustrate the effectiveness of the proposed methods, as well as the error analysis.展开更多
Thermal decomposition behaviors of TiH_2 powder under a flowing helium atmosphere and in a low vacuum condition have been studied using an in situ EXAFS technique.By an EXAFS analysis containing the multiple scatterin...Thermal decomposition behaviors of TiH_2 powder under a flowing helium atmosphere and in a low vacuum condition have been studied using an in situ EXAFS technique.By an EXAFS analysis containing the multiple scattering paths including H atoms,the changes of the hydrogen stoichiometric ratio and the phase transformation sequence are obtained.The results demonstrate that the initial decomposition temperature is dependent on experimental conditions,which occurs,respectively,at about 300 and 400℃ in a low vacuum condition and under a flowing helium atmosphere.During the decomposition process of TiH_2 in a low vacuum condition,the sample experiences a phase change process:δ(TiH_2)→δ(TiH_x)→δ(TiH_1)+β(TiH_x)→δ(TiH_x)+β(TiH_x)+α(Ti)→β(TiH_x)+α(Ti)→α(Ti)+β(Ti).This study offers a way to detect the structural information of hydrogen.A detailed discussion about the decomposition process of TiH_2 is given in this paper.展开更多
基金supported by the National Natural Science Foundation of China (61471031)the Fundamental Research Funds for the Central Universities,Beijing Jiaotong University (2013JBZ001)+2 种基金National Science and Technology Major Project (2016ZX03001014006)the Open Research Fund of National Mobile Communications Research Laboratory,Southeast University (No.2017D14)Shenzhen Peacock Program under Grant No.KQJSCX20160226193545
文摘In the wireless localization application, multipath propagation seriously affects the localization accuracy. This paper presents two algorithms to solve the multipath problem. Firstly, we improve the Line of Possible Mobile Device(LPMD) algorithm by optimizing the utilization of the direct paths for single-bound scattering scenario. Secondly, the signal path reckoning method with the assistance of geographic information system is proposed to solve the problem of localization with multi-bound scattering paths. With the building model's idealization, the proposed method refers to the idea of ray tracing and dead reckoning. According to the rule of wireless signal reflection, the signal propagation path is reckoned using the measurements of emission angle and propagation distance, and then the estimated location can be obtained. Simulation shows that the proposed method obtains better results than the existing geometric localization methods in multipath environment when the angle error is controlled.
文摘Aiming at the dimension disaster problem, poor model generalization ability and deadlock problem in special obstacles environment caused by the increase of state information in the local path planning process of mobile robot, this paper proposed a Double BP Q-learning algorithm based on the fusion of Double Q-learning algorithm and BP neural network. In order to solve the dimensional disaster problem, two BP neural network fitting value functions with the same network structure were used to replace the two <i>Q</i> value tables in Double Q-Learning algorithm to solve the problem that the <i>Q</i> value table cannot store excessive state information. By adding the mechanism of priority experience replay and using the parameter transfer to initialize the model parameters in different environments, it could accelerate the convergence rate of the algorithm, improve the learning efficiency and the generalization ability of the model. By designing specific action selection strategy in special environment, the deadlock state could be avoided and the mobile robot could reach the target point. Finally, the designed Double BP Q-learning algorithm was simulated and verified, and the probability of mobile robot reaching the target point in the parameter update process was compared with the Double Q-learning algorithm under the same condition of the planned path length. The results showed that the model trained by the improved Double BP Q-learning algorithm had a higher success rate in finding the optimal or sub-optimal path in the dense discrete environment, besides, it had stronger model generalization ability, fewer redundant sections, and could reach the target point without entering the deadlock zone in the special obstacles environment.
文摘The forward-looking image sonar is a necessary vision device for Autonomous Underwater Vehicles (AUV). Based on the acoustic image received from forward-looking image sonar, AUV local path is planned. When the environment model is made to adapt to local path planning, an iterative algorithm of binary conversion is used for image segmentation. Raw data of the acoustic image, which were received from serial port, are processed. By the use of "Mathematic Morphology" to filter noise, a mathematic model of environment for local path planning is established after coordinate transformation. The optimal path is searched by the distant transmission (Dt) algorithm. Simulation is conducted for the analysis of the algorithm. Experiment on the sea proves it reliable.
基金Foundation item: Supported by the National Natural Science Foundation of China under Grant No.61100005.
文摘Conducting hydrodynamic and physical motion simulation tests using a large-scale self-propelled model under actual wave conditions is an important means for researching environmental adaptability of ships. During the navigation test of the self-propelled model, the complex environment including various port facilities, navigation facilities, and the ships nearby must be considered carefully, because in this dense environment the impact of sea waves and winds on the model is particularly significant. In order to improve the security of the self-propelled model, this paper introduces the Q learning based on reinforcement learning combined with chaotic ideas for the model's collision avoidance, in order to improve the reliability of the local path planning. Simulation and sea test results show that this algorithm is a better solution for collision avoidance of the self navigation model under the interference of sea winds and waves with good adaptability.
基金The authors would like to thank the United Arab Emirates University for funding this work under Start-Up grant[G00003321].
文摘This paper presents a development of a novel path planning algorithm, called Generalized Laser simulator (GLS), for solving the mobilerobot path planning problem in a two-dimensional map with the presence ofconstraints. This approach gives the possibility to find the path for a wheelmobile robot considering some constraints during the robot movement inboth known and unknown environments. The feasible path is determinedbetween the start and goal positions by generating wave of points in alldirection towards the goal point with adhering to constraints. In simulation,the proposed method has been tested in several working environments withdifferent degrees of complexity. The results demonstrated that the proposedmethod is able to generate efficiently an optimal collision-free path. Moreover,the performance of the proposed method was compared with the A-star andlaser simulator (LS) algorithms in terms of path length, computational timeand path smoothness. The results revealed that the proposed method hasshortest path length, less computational time and the best smooth path. Asan average, GLS is faster than A∗ and LS by 7.8 and 5.5 times, respectivelyand presents a path shorter than A∗ and LS by 1.2 and 1.5 times. In orderto verify the performance of the developed method in dealing with constraints, an experimental study was carried out using a Wheeled Mobile Robot(WMR) platform in labs and roads. The experimental work investigates acomplete autonomous WMR path planning in the lab and road environmentsusing a live video streaming. Local maps were built using data from a live video streaming with real-time image processing to detect segments of theanalogous-road in lab or real-road environments. The study shows that theproposed method is able to generate shortest path and best smooth trajectoryfrom start to goal points in comparison with laser simulator.
基金supported by Shaanxi Provincial Key Research and Development Program of China(Nos.2024GX-YBXM-305,2024GX-YBXM-178)Shaanxi Province Qinchuangyuan“Scientists+Engineers”Team Construction(No.2022KXJ032)。
文摘In order to solve the problem of path planning of tower cranes,an improved ant colony algorithm was proposed.Firstly,the tower crane was simplified into a three-degree-of-freedom mechanical arm,and the D-H motion model was established to solve the forward and inverse kinematic equations.Secondly,the traditional ant colony algorithm was improved.The heuristic function was improved by introducing the distance between the optional nodes and the target point into the function.Then the transition probability was improved by introducing the security factor of surrounding points into the transition probability.In addition,the local path chunking strategy was used to optimize the local multi-inflection path and reduce the local redundant inflection points.Finally,according to the position of the hook,the kinematic inversion of the tower crane was carried out,and the variables of each joint were obtained.More specifically,compared with the traditional ant colony algorithm,the simulation results showed that improved ant colony algorithm converged faster,shortened the optimal path length,and optimized the path quality in the simple and complex environment.
基金Project supported by the National Natural Science Foundation of China (Grant No. 30570432)the Young Research Foundation of Education Department of Hunan Province of China (Grant No. 11B128)partly by the Doctor Startup Project of Xiangtan University (Grant No. 10QDZ20)
文摘Missing link prediction provides significant instruction for both analysis of network structure and mining of unknown links in incomplete networks. Recently, many algorithms have been proposed based on various node-similarity measures. Among these measures, the common neighbour index, the resource allocation index, and the local path index, stemming from different source, have been proved to have relatively high accuracy and low computational effort. In this paper, we propose a similarity index by combining the resource allocation index and the local path index. Simulation results on six unweighted networks show that the accuracy of the proposed index is higher than that of the local path one. Based on the same idea of the present index, we develop its corresponding weighted version and test it on several weighted networks. It is found that, except for the USAir network, the weighted variant also performs better than both the weighted resource allocation index and the weighted local path index. Due to the improved accuracy and the still low computational complexity, the indices may be useful for link prediction.
基金supported by the National Program on Key Basic Research Project of China (No. 2011CB302400)the National Natural Science Foundation of China (No. 51175495)
文摘The similarity property of conformal parameterization makes it able to locally preserve the shapes between a surface and its parameter domain, as opposed to common parameterization methods. A parametric tool path planning method is proposed in this paper through such parameterization of triangular meshes which is furthermore based on the geodesic on meshes. The parameterization has the properties of local similarity and free boundary which are exploited to simplify the formulas for computing path parameters, which play a fundamentally important role in tool path planning, and keep the path boundary-conformed and smooth. Experimental results are given to illustrate the effectiveness of the proposed methods, as well as the error analysis.
基金Supported by National Natural Science Foundation of China(10875143)
文摘Thermal decomposition behaviors of TiH_2 powder under a flowing helium atmosphere and in a low vacuum condition have been studied using an in situ EXAFS technique.By an EXAFS analysis containing the multiple scattering paths including H atoms,the changes of the hydrogen stoichiometric ratio and the phase transformation sequence are obtained.The results demonstrate that the initial decomposition temperature is dependent on experimental conditions,which occurs,respectively,at about 300 and 400℃ in a low vacuum condition and under a flowing helium atmosphere.During the decomposition process of TiH_2 in a low vacuum condition,the sample experiences a phase change process:δ(TiH_2)→δ(TiH_x)→δ(TiH_1)+β(TiH_x)→δ(TiH_x)+β(TiH_x)+α(Ti)→β(TiH_x)+α(Ti)→α(Ti)+β(Ti).This study offers a way to detect the structural information of hydrogen.A detailed discussion about the decomposition process of TiH_2 is given in this paper.