期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Optimized Deep Learning Model for Fire Semantic Segmentation
1
作者 Songbin Li Peng Liu +1 位作者 Qiandong Yan Ruiling Qian 《Computers, Materials & Continua》 SCIE EI 2022年第9期4999-5013,共15页
Recent convolutional neural networks(CNNs)based deep learning has significantly promoted fire detection.Existing fire detection methods can efficiently recognize and locate the fire.However,the accurate flame boundary... Recent convolutional neural networks(CNNs)based deep learning has significantly promoted fire detection.Existing fire detection methods can efficiently recognize and locate the fire.However,the accurate flame boundary and shape information is hard to obtain by them,which makes it difficult to conduct automated fire region analysis,prediction,and early warning.To this end,we propose a fire semantic segmentation method based on Global Position Guidance(GPG)and Multi-path explicit Edge information Interaction(MEI).Specifically,to solve the problem of local segmentation errors in low-level feature space,a top-down global position guidance module is used to restrain the offset of low-level features.Besides,an MEI module is proposed to explicitly extract and utilize the edge information to refine the coarse fire segmentation results.We compare the proposed method with existing advanced semantic segmentation and salient object detection methods.Experimental results demonstrate that the proposed method achieves 94.1%,93.6%,94.6%,95.3%,and 95.9%Intersection over Union(IoU)on five test sets respectively which outperforms the suboptimal method by a large margin.In addition,in terms of accuracy,our approach also achieves the best score. 展开更多
关键词 Fire semantic segmentation local segmentation errors global position guidance multi-path explicit edge information interaction feature fusion
下载PDF
Numerical differentiation of noisy data with local optimum by data segmentation
2
作者 Jianhua Zhang Xiufu Que +2 位作者 Wei Chen Yuanhao Huang Lianqiao Yang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2015年第4期868-876,共9页
A new numerical differentiation method with local opti- mum by data segmentation is proposed. The segmentation of data is based on the second derivatives computed by a Fourier devel- opment method. A filtering process... A new numerical differentiation method with local opti- mum by data segmentation is proposed. The segmentation of data is based on the second derivatives computed by a Fourier devel- opment method. A filtering process is used to achieve acceptable segmentation. Numerical results are presented by using the data segmentation method, compared with the regularization method. For further investigation, the proposed algorithm is applied to the resistance capacitance (RC) networks identification problem, and improvements of the result are obtained by using this algorithm. 展开更多
关键词 numerical differentiation noisy data local optimum data segmentation.
下载PDF
Automated Extraction for Water Bodies Using New Water Index from Landsat 8 OLI Images 被引量:4
3
作者 Pu YAN Yue FANG +2 位作者 Jie CHEN Gang WANG Qingwei TANG 《Journal of Geodesy and Geoinformation Science》 CSCD 2023年第1期59-75,共17页
The extraction of water bodies is essential for monitoring water resources,ecosystem services and the hydrological cycle,so analyzing water bodies from remote sensing images is necessary.The water index is designed to... The extraction of water bodies is essential for monitoring water resources,ecosystem services and the hydrological cycle,so analyzing water bodies from remote sensing images is necessary.The water index is designed to highlight water bodies in remote sensing images.We employ a new water index and digital image processing technology to extract water bodies automatically and accurately from Landsat 8 OLI images.Firstly,we preprocess Landsat 8 OLI images with radiometric calibration and atmospheric correction.Subsequently,we apply KT transformation,LBV transformation,AWEI nsh,and HIS transformation to the preprocessed image to calculate a new water index.Then,we perform linear feature enhancement and improve the local adaptive threshold segmentation method to extract small water bodies accurately.Meanwhile,we employ morphological enhancement and improve the local adaptive threshold segmentation method to extract large water bodies.Finally,we combine small and large water bodies to get complete water bodies.Compared with other traditional methods,our method has apparent advantages in water extraction,particularly in the extraction of small water bodies. 展开更多
关键词 water bodies extraction Landsat 8 OLI images water index improved local adaptive threshold segmentation linear feature enhancement
下载PDF
Novel Model Using Kernel Function and Local Intensity Information for Noise Image Segmentation 被引量:2
4
作者 Gang Li Haifang Li Ling Zhang 《Tsinghua Science and Technology》 SCIE EI CAS CSCD 2018年第3期303-314,共12页
It remains a challenging task to segment images that are distorted by noise and intensity inhomogeneity.To overcome these problems, in this paper, we present a novel region-based active contour model based on local in... It remains a challenging task to segment images that are distorted by noise and intensity inhomogeneity.To overcome these problems, in this paper, we present a novel region-based active contour model based on local intensity information and a kernel metric. By introducing intensity information about the local region, the proposed model can accurately segment images with intensity inhomogeneity. To enhance the model's robustness to noise and outliers, we introduce a kernel metric as its objective functional. To more accurately detect boundaries, we apply convex optimization to this new model, which uses a weighted total-variation norm given by an edge indicator function. Lastly, we use the split Bregman iteration method to obtain the numerical solution. We conducted an extensive series of experiments on both synthetic and real images to evaluate our proposed method, and the results demonstrate significant improvements in terms of efficiency and accuracy, compared with the performance of currently popular methods. 展开更多
关键词 kernel metric image segmentation local intensity information convex optimization
原文传递
Effect of local openings on bearing behavior and failure mechanism of shield tunnel segments
5
作者 Xiaojing Gao Pengfei Li +3 位作者 Mingju Zhang Haifeng Wang Ziqi Jia Wu Feng 《Underground Space》 SCIE EI CSCD 2024年第3期183-205,共23页
Local failures(loss of concrete or reinforcement)can severely compromise the bearing capacity of shield segments,damaging the tunnel structures.To investigate the effects of local openings on the bearing behavior and ... Local failures(loss of concrete or reinforcement)can severely compromise the bearing capacity of shield segments,damaging the tunnel structures.To investigate the effects of local openings on the bearing behavior and failure mechanism,four full-scale bending tests were conducted on specimens with different opening positions and diameters;monitoring of load,displacement,and concrete strain was performed during loading.The test results reveal that both the opening position and diameter significantly influence the bearing characteristics of the segment.The failure process includes four sequential stages distinguished by three critical loads,namely the cracking,failure,and ultimate loads.Subsequently,the numerical model of the local failure segment was established using the elastoplastic damage constitutive relation of the concrete and verified by inversing the full-scale test results.Based on the numerical model,parametric analyses were performed to comprehensively investigate the influences of the opening position,concrete loss,and reinforcement loss on the bending capacity.Furthermore,an analytical model was proposed,indicating that the opening position is the primary factor decreasing the bearing capacity,followed by the opening diameter and reinforcement loss.The results of this study can provide a theoretical basis for the safety assessment and remedial design of subway shield tunnels under extreme breakthrough conditions. 展开更多
关键词 Shield tunnel Local opening segment Bearing behavior Failure mechanism
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部