In this work,the localized method of fundamental solution(LMFS)is extended to Signorini problem.Unlike the traditional fundamental solution(MFS),the LMFS approximates the field quantity at each node by using the field...In this work,the localized method of fundamental solution(LMFS)is extended to Signorini problem.Unlike the traditional fundamental solution(MFS),the LMFS approximates the field quantity at each node by using the field quantities at the adjacent nodes.The idea of the LMFS is similar to the localized domain type method.The fictitious boundary nodes are proposed to impose the boundary condition and governing equations at each node to formulate a sparse matrix.The inequality boundary condition of Signorini problem is solved indirectly by introducing nonlinear complementarity problem function(NCP-function).Numerical examples are carried out to validate the reliability and effectiveness of the LMFS in solving Signorini problems.展开更多
In this work,a numerical scheme is constructed for solving nonlinear parabolictype partial-integro differential equations.The proposed numerical scheme is based on radial basis functions which are local in nature like...In this work,a numerical scheme is constructed for solving nonlinear parabolictype partial-integro differential equations.The proposed numerical scheme is based on radial basis functions which are local in nature like finite difference numerical schemes.The radial basis functions are used to approximate the derivatives involved and the integral is approximated by equal width integration rule.The resultant differentiation matrices are sparse in nature.After spatial approximation using RBF the partial integro-differential equations reduce to the system of ODEs.Then ODEs system can be solved by various types of ODE solvers.The proposed numerical scheme is tested and compared with other methods available in literature for different test problems.The stability and convergence of the present numerical scheme are discussed.展开更多
Accurate and efficient analysis of the coupled electroelastic behavior of piezoelectric structures is a challenging task in the community of computational mechanics.During the past few decades,the method of fundamenta...Accurate and efficient analysis of the coupled electroelastic behavior of piezoelectric structures is a challenging task in the community of computational mechanics.During the past few decades,the method of fundamental solutions(MFS)has emerged as a popular and well-established meshless boundary collocation method for the numerical solution of many engineering applications.The classical MFS formulation,however,leads to dense and non-symmetric coefficient matrices which will be computationally expensive for large-scale engineering simulations.In this paper,a localized version of the MFS(LMFS)is devised for electroelastic analysis of twodimensional(2D)piezoelectric structures.In the LMFS,the entire computational domain is divided into a set of overlapping small sub-domains where the MFS-based approximation and the moving least square(MLS)technique are employed.Different to the classical MFS,the LMFS will produce banded and sparse coefficient matrices which makes the method very attractive for large-scale simulations.Preliminary numerical experiments illustrate that the present LMFM is very promising for coupled electroelastic analysis of piezoelectric materials.展开更多
This paper documents the first attempt to apply a localized method of fundamental solutions(LMFS)to the acoustic analysis of car cavity containing soundabsorbing materials.The LMFS is a recently developed meshless app...This paper documents the first attempt to apply a localized method of fundamental solutions(LMFS)to the acoustic analysis of car cavity containing soundabsorbing materials.The LMFS is a recently developed meshless approach with the merits of being mathematically simple,numerically accurate,and requiring less computer time and storage.Compared with the traditional method of fundamental solutions(MFS)with a full interpolation matrix,the LMFS can obtain a sparse banded linear algebraic system,and can circumvent the perplexing issue of fictitious boundary encountered in the MFS for complex solution domains.In the LMFS,only circular or spherical fictitious boundary is involved.Based on these advantages,the method can be regarded as a competitive alternative to the standard method,especially for high-dimensional and large-scale problems.Three benchmark numerical examples are provided to verify the effectiveness and performance of the present method for the solution of car cavity acoustic problems with impedance conditions.展开更多
This paper first attempts to solve the transient heat conduction problem by combining the recently proposed local knot method(LKM)with the dual reciprocity method(DRM).Firstly,the temporal derivative is discretized by...This paper first attempts to solve the transient heat conduction problem by combining the recently proposed local knot method(LKM)with the dual reciprocity method(DRM).Firstly,the temporal derivative is discretized by a finite difference scheme,and thus the governing equation of transient heat transfer is transformed into a non-homogeneous modified Helmholtz equation.Secondly,the solution of the non-homogeneous modified Helmholtz equation is decomposed into a particular solution and a homogeneous solution.And then,the DRM and LKM are used to solve the particular solution of the non-homogeneous equation and the homogeneous solution of the modified Helmholtz equation,respectively.The LKM is a recently proposed local radial basis function collocationmethod with themerits of being simple,accurate,and free ofmesh and integration.Compared with the traditional domain-type and boundary-type schemes,the present coupling algorithm could be treated as a really good alternative for the analysis of transient heat conduction on high-dimensional and complicated domains.Numerical experiments,including two-and three-dimensional heat transfer models,demonstrated the effectiveness and accuracy of the new methodology.展开更多
This paper provides a study on the stability and time-step constraints of solving the linearized Korteweg-de Vries(KdV)equation,using implicit-explicit(IMEX)Runge-Kutta(RK)time integration methods combined with either...This paper provides a study on the stability and time-step constraints of solving the linearized Korteweg-de Vries(KdV)equation,using implicit-explicit(IMEX)Runge-Kutta(RK)time integration methods combined with either finite difference(FD)or local discontinuous Galerkin(DG)spatial discretization.We analyze the stability of the fully discrete scheme,on a uniform mesh with periodic boundary conditions,using the Fourier method.For the linearized KdV equation,the IMEX schemes are stable under the standard Courant-Friedrichs-Lewy(CFL)conditionτ≤λh.Here,λis the CFL number,τis the time-step size,and h is the spatial mesh size.We study several IMEX schemes and characterize their CFL number as a function ofθ=d/h^(2)with d being the dispersion coefficient,which leads to several interesting observations.We also investigate the asymptotic behaviors of the CFL number for sufficiently refined meshes and derive the necessary conditions for the asymptotic stability of the IMEX-RK methods.Some numerical experiments are provided in the paper to illustrate the performance of IMEX methods under different time-step constraints.展开更多
The aim of this paper is to propose a fast meshless numerical scheme for the simulation of non-linear Schrodinger equations.In the proposed scheme,the implicit-Euler scheme is used for the temporal discretization and ...The aim of this paper is to propose a fast meshless numerical scheme for the simulation of non-linear Schrodinger equations.In the proposed scheme,the implicit-Euler scheme is used for the temporal discretization and the localized method of approximate particular solution(LMAPS)is utilized for the spatial discretization.The multiple-scale technique is introduced to obtain the shape parameters of the multiquadric radial basis function for 2D problems and the Gaussian radial basis function for 3D problems.Six numerical examples are carried out to verify the accuracy and efficiency of the proposed scheme.Compared with well-known techniques,numerical results illustrate that the proposed scheme is of merits being easy-to-program,high accuracy,and rapid convergence even for long-term problems.These results also indicate that the proposed scheme has great potential in large scale problems and real-world applications.展开更多
The localized method of fundamental solutions(LMFS)is a relatively new meshless boundary collocation method.In the LMFS,the global MFS approxima-tion which is expensive to evaluate is replaced by local MFS formulation...The localized method of fundamental solutions(LMFS)is a relatively new meshless boundary collocation method.In the LMFS,the global MFS approxima-tion which is expensive to evaluate is replaced by local MFS formulation defined in a set of overlapping subdomains.The LMFS algorithm therefore converts differential equations into sparse rather than dense matrices which are much cheaper to calcu-late.This paper makes thefirst attempt to apply the LMFS,in conjunction with a domain-decomposition technique,for the numerical solution of steady-state heat con-duction problems in two-dimensional(2D)anisotropic layered materials.Here,the layered material is decomposed into several subdomains along the layer-layer inter-faces,and in each of the subdomains,the solution is approximated by using the LMFS expansion.On the subdomain interface,compatibility of temperatures and heatfluxes are imposed.Preliminary numerical experiments illustrate that the proposed domain-decomposition LMFS algorithm is accurate,stable and computationally efficient for the numerical solution of large-scale multi-layered materials.展开更多
In this paper,a local discontinuous Galerkin(LDG)scheme for the time-fractional diffusion equation is proposed and analyzed.The Caputo time-fractional derivative(of orderα,with 0<α<1)is approximated by a finit...In this paper,a local discontinuous Galerkin(LDG)scheme for the time-fractional diffusion equation is proposed and analyzed.The Caputo time-fractional derivative(of orderα,with 0<α<1)is approximated by a finite difference method with an accuracy of order3-α,and the space discretization is based on the LDG method.For the finite difference method,we summarize and supplement some previous work by others,and apply it to the analysis of the convergence and stability of the proposed scheme.The optimal error estimate is obtained in the L2norm,indicating that the scheme has temporal(3-α)th-order accuracy and spatial(k+1)th-order accuracy,where k denotes the highest degree of a piecewise polynomial in discontinuous finite element space.The numerical results are also provided to verify the accuracy and efficiency of the considered scheme.展开更多
This paper aims to numerically study the generalized time-fractional Burgers equation in two spatial dimensions using the L1/LDG method. Here the L1 scheme is used to approximate the time-fractional derivative, i.e., ...This paper aims to numerically study the generalized time-fractional Burgers equation in two spatial dimensions using the L1/LDG method. Here the L1 scheme is used to approximate the time-fractional derivative, i.e., Caputo derivative, while the local discontinuous Galerkin (LDG) method is used to discretize the spatial derivative. If the solution has strong temporal regularity, i.e., its second derivative with respect to time being right continuous, then the L1 scheme on uniform meshes (uniform L1 scheme) is utilized. If the solution has weak temporal regularity, i.e., its first and/or second derivatives with respect to time blowing up at the starting time albeit the function itself being right continuous at the beginning time, then the L1 scheme on non-uniform meshes (non-uniform L1 scheme) is applied. Then both uniform L1/LDG and non-uniform L1/LDG schemes are constructed. They are both numerically stable and the \(L^2\) optimal error estimate for the velocity is obtained. Numerical examples support the theoretical analysis.展开更多
Due to the coupling between the hydrodynamic equation and the phase-field equation in two-phase incompressible flows,it is desirable to develop efficient and high-order accurate numerical schemes that can decouple the...Due to the coupling between the hydrodynamic equation and the phase-field equation in two-phase incompressible flows,it is desirable to develop efficient and high-order accurate numerical schemes that can decouple these two equations.One popular and efficient strategy is to add an explicit stabilizing term to the convective velocity in the phase-field equation to decouple them.The resulting schemes are only first-order accurate in time,and it seems extremely difficult to generalize the idea of stabilization to the second-order or higher version.In this paper,we employ the spectral deferred correction method to improve the temporal accuracy,based on the first-order decoupled and energy-stable scheme constructed by the stabilization idea.The novelty lies in how the decoupling and linear implicit properties are maintained to improve the efficiency.Within the framework of the spatially discretized local discontinuous Galerkin method,the resulting numerical schemes are fully decoupled,efficient,and high-order accurate in both time and space.Numerical experiments are performed to validate the high-order accuracy and efficiency of the methods for solving phase-field models of two-phase incompressible flows.展开更多
This study examines the multicriteria scheduling problem on a single machine to minimize three criteria: the maximum cost function, denoted by maximum late work (V<sub>max</sub>), maximum tardy job, denote...This study examines the multicriteria scheduling problem on a single machine to minimize three criteria: the maximum cost function, denoted by maximum late work (V<sub>max</sub>), maximum tardy job, denoted by (T<sub>max</sub>), and maximum earliness (E<sub>max</sub>). We propose several algorithms based on types of objectives function to be optimized when dealing with simultaneous minimization problems with and without weight and hierarchical minimization problems. The proposed Algorithm (3) is to find the set of efficient solutions for 1//F (V<sub>max</sub>, T<sub>max</sub>, E<sub>max</sub>) and 1//(V<sub>max</sub> + T<sub>max</sub> + E<sub>max</sub>). The Local Search Heuristic Methods (Descent Method (DM), Simulated Annealing (SA), Genetic Algorithm (GA), and the Tree Type Heuristics Method (TTHM) are applied to solve all suggested problems. Finally, the experimental results of Algorithm (3) are compared with the results of the Branch and Bound (BAB) method for optimal and Pareto optimal solutions for smaller instance sizes and compared to the Local Search Heuristic Methods for large instance sizes. These results ensure the efficiency of Algorithm (3) in a reasonable time.展开更多
Nonlinear formulations of the meshless local Petrov-Galerkin (MLPG) method are presented for geometrically nonlinear problems. The method requires no mesh in computation and therefore avoids mesh distortion difficul...Nonlinear formulations of the meshless local Petrov-Galerkin (MLPG) method are presented for geometrically nonlinear problems. The method requires no mesh in computation and therefore avoids mesh distortion difficulties in the large deformation analysis. The essential boundary conditions in the present formulation axe imposed by a penalty method. An incremental and iterative solution procedure is used to solve geometrically nonlinear problems. Several examples are presented to demonstrate the effectiveness of the method in geometrically nonlinear problems analysis. Numerical results show that the MLPG method is an effective one and that the values of the unknown variable are quite accurate.展开更多
A local pseudo arc-length method(LPALM)for solving hyperbolic conservation laws is presented in this paper.The key idea of this method comes from the original arc-length method,through which the critical points are ...A local pseudo arc-length method(LPALM)for solving hyperbolic conservation laws is presented in this paper.The key idea of this method comes from the original arc-length method,through which the critical points are bypassed by transforming the computational space.The method is based on local changes of physical variables to choose the discontinuous stencil and introduce the pseudo arc-length parameter,and then transform the governing equations from physical space to arc-length space.In order to solve these equations in arc-length coordinate,it is necessary to combine the velocity of mesh points in the moving mesh method,and then convert the physical variable in arclength space back to physical space.Numerical examples have proved the effectiveness and generality of the new approach for linear equation,nonlinear equation and system of equations with discontinuous initial values.Non-oscillation solution can be obtained by adjusting the parameter and the mesh refinement number for problems containing both shock and rarefaction waves.展开更多
The objectives of this study are to employ the meshless local Petrov-Galerkin method (MLPGM) to solve three-dimensional shell problems. The computational accuracy of MLPGM for shell problems is affected by many fact...The objectives of this study are to employ the meshless local Petrov-Galerkin method (MLPGM) to solve three-dimensional shell problems. The computational accuracy of MLPGM for shell problems is affected by many factors, including the dimension of compact support domain, the dimension of quadrture domain, the number of integral cells and the number of Gauss points. These factors' sensitivity analysis is to adopt the Taguchi experimental design technology and point out the dimension of the quadrature domain with the largest influence on the computational accuracy of the present MLPGM for shells and give out the optimum combination of these factors. A few examples are given to verify the reliability and good convergence of MLPGM for shell problems compared to the theoretical or the finite element results.展开更多
Employing an ideal elasto-plastic model,the typically used strength reduction method reduced the strength of all soil elements of a slope.Therefore,this method was called the global strength reduction method(GSRM).How...Employing an ideal elasto-plastic model,the typically used strength reduction method reduced the strength of all soil elements of a slope.Therefore,this method was called the global strength reduction method(GSRM).However,the deformation field obtained by GSRM could not reflect the real deformation of a slope when the slope became unstable.For most slopes,failure occurs once the strength of some regional soil is sufficiently weakened; thus,the local strength reduction method(LSRM)was proposed to analyze slope stability.In contrast with GSRM,LSRM only reduces the strength of local soil,while the strength of other soil remains unchanged.Therefore,deformation by LSRM is more reasonable than that by GSRM.In addition,the accuracy of the slope's deformation depends on the constitutive model to a large degree,and the variable-modulus elasto-plastic model was thus adopted.This constitutive model was an improvement of the Duncan–Chang model,which modified soil's deformation modulus according to stress level,and it thus better reflected the plastic feature of soil.Most importantly,the parameters of the variable-modulus elasto-plastic model could be determined through in-situ tests,and parameters determination by plate loading test and pressuremeter test were introduced.Therefore,it is easy to put this model into practice.Finally,LSRM and the variable-modulus elasto-plastic model were used to analyze Egongdai ancient landslide.Safety factor,deformation field,and optimal reinforcement measures for Egongdai ancient landslide were obtained based on the proposed method.展开更多
In this study, a multivariate local quadratic polynomial regression(MLQPR) method is proposed to design a model for the sludge volume index(SVI). In MLQPR, a quadratic polynomial regression function is established to ...In this study, a multivariate local quadratic polynomial regression(MLQPR) method is proposed to design a model for the sludge volume index(SVI). In MLQPR, a quadratic polynomial regression function is established to describe the relationship between SVI and the relative variables, and the important terms of the quadratic polynomial regression function are determined by the significant test of the corresponding coefficients. Moreover, a local estimation method is introduced to adjust the weights of the quadratic polynomial regression function to improve the model accuracy. Finally, the proposed method is applied to predict the SVI values in a real wastewater treatment process(WWTP). The experimental results demonstrate that the proposed MLQPR method has faster testing speed and more accurate results than some existing methods.展开更多
This paper presents an improved approach based on the equivalent-weights particle filter(EWPF)that uses the proposal density to effectively improve the traditional particle filter.The proposed approach uses historical...This paper presents an improved approach based on the equivalent-weights particle filter(EWPF)that uses the proposal density to effectively improve the traditional particle filter.The proposed approach uses historical data to calculate statistical observations instead of the future observations used in the EWPF’s proposal density and draws on the localization scheme used in the localized PF(LPF)to construct the localized EWPF.The new approach is called the statistical observation localized EWPF(LEWPF-Sobs);it uses statistical observations that are better adapted to the requirements of real-time assimilation and the localization function is used to calculate weights to reduce the effect of missing observations on the weights.This approach not only retains the advantages of the EWPF,but also improves the assimilation quality when using sparse observations.Numerical experiments performed with the Lorenz 96 model show that the statistical observation EWPF is better than the EWPF and EAKF when the model uses standard distribution observations.Comparisons of the statistical observation localized EWPF and LPF reveal the advantages of the new method,with fewer particles giving better results.In particular,the new improved filter performs better than the traditional algorithms when the observation network contains densely spaced measurements associated with model state nonlinearities.展开更多
The meshless method is a new numerical technique presented in recent years.It uses the moving least square(MLS)approximation as a shape function.The smoothness of the MLS approximation is determined by that of the bas...The meshless method is a new numerical technique presented in recent years.It uses the moving least square(MLS)approximation as a shape function.The smoothness of the MLS approximation is determined by that of the basic function and of the weight function,and is mainly determined by that of the weight function.Therefore,the weight function greatly affects the accuracy of results obtained.Different kinds of weight functions,such as the spline function, the Gauss function and so on,are proposed recently by many researchers.In the present work,the features of various weight functions are illustrated through solving elasto-static problems using the local boundary integral equation method.The effect of various weight functions on the accuracy, convergence and stability of results obtained is also discussed.Examples show that the weight function proposed by Zhou Weiyuan and Gauss and the quartic spline weight function are better than the others if parameters c and α in Gauss and exponential weight functions are in the range of reasonable values,respectively,and the higher the smoothness of the weight function,the better the features of the solutions.展开更多
In this paper,we present the local discontinuous Galerkin method for solving Burgers' equation and the modified Burgers' equation.We describe the algorithm formulation and practical implementation of the local disco...In this paper,we present the local discontinuous Galerkin method for solving Burgers' equation and the modified Burgers' equation.We describe the algorithm formulation and practical implementation of the local discontinuous Galerkin method in detail.The method is applied to the solution of the one-dimensional viscous Burgers' equation and two forms of the modified Burgers' equation.The numerical results indicate that the method is very accurate and efficient.展开更多
基金supported by the National Science Foundation of China(No.52109089)support of Post Doctor Program(2019M652281)Nature Science Foundation of Jiangxi Province(20192BAB216040).
文摘In this work,the localized method of fundamental solution(LMFS)is extended to Signorini problem.Unlike the traditional fundamental solution(MFS),the LMFS approximates the field quantity at each node by using the field quantities at the adjacent nodes.The idea of the LMFS is similar to the localized domain type method.The fictitious boundary nodes are proposed to impose the boundary condition and governing equations at each node to formulate a sparse matrix.The inequality boundary condition of Signorini problem is solved indirectly by introducing nonlinear complementarity problem function(NCP-function).Numerical examples are carried out to validate the reliability and effectiveness of the LMFS in solving Signorini problems.
文摘In this work,a numerical scheme is constructed for solving nonlinear parabolictype partial-integro differential equations.The proposed numerical scheme is based on radial basis functions which are local in nature like finite difference numerical schemes.The radial basis functions are used to approximate the derivatives involved and the integral is approximated by equal width integration rule.The resultant differentiation matrices are sparse in nature.After spatial approximation using RBF the partial integro-differential equations reduce to the system of ODEs.Then ODEs system can be solved by various types of ODE solvers.The proposed numerical scheme is tested and compared with other methods available in literature for different test problems.The stability and convergence of the present numerical scheme are discussed.
基金supported by the National Natural Science Foundation of China(Nos.11872220,12111530006)the Natural Science Foundation of Shandong Province of China(Nos.ZR2021JQ02,2019KJI009)the Key Laboratory of Road Construction Technology and Equipment(Chang’an University,No.300102251505).
文摘Accurate and efficient analysis of the coupled electroelastic behavior of piezoelectric structures is a challenging task in the community of computational mechanics.During the past few decades,the method of fundamental solutions(MFS)has emerged as a popular and well-established meshless boundary collocation method for the numerical solution of many engineering applications.The classical MFS formulation,however,leads to dense and non-symmetric coefficient matrices which will be computationally expensive for large-scale engineering simulations.In this paper,a localized version of the MFS(LMFS)is devised for electroelastic analysis of twodimensional(2D)piezoelectric structures.In the LMFS,the entire computational domain is divided into a set of overlapping small sub-domains where the MFS-based approximation and the moving least square(MLS)technique are employed.Different to the classical MFS,the LMFS will produce banded and sparse coefficient matrices which makes the method very attractive for large-scale simulations.Preliminary numerical experiments illustrate that the present LMFM is very promising for coupled electroelastic analysis of piezoelectric materials.
基金the National Natural Science Foundation of China(No.11802151)the Natural Science Foundation of Shandong Province of China(No.ZR2019BA008).
文摘This paper documents the first attempt to apply a localized method of fundamental solutions(LMFS)to the acoustic analysis of car cavity containing soundabsorbing materials.The LMFS is a recently developed meshless approach with the merits of being mathematically simple,numerically accurate,and requiring less computer time and storage.Compared with the traditional method of fundamental solutions(MFS)with a full interpolation matrix,the LMFS can obtain a sparse banded linear algebraic system,and can circumvent the perplexing issue of fictitious boundary encountered in the MFS for complex solution domains.In the LMFS,only circular or spherical fictitious boundary is involved.Based on these advantages,the method can be regarded as a competitive alternative to the standard method,especially for high-dimensional and large-scale problems.Three benchmark numerical examples are provided to verify the effectiveness and performance of the present method for the solution of car cavity acoustic problems with impedance conditions.
基金supported by the NationalNatural Science Foundation of China (No.11802151)the Natural Science Foundation of Shandong Province of China (No.ZR2019BA008)the China Postdoctoral Science Foundation (No.2019M652315).
文摘This paper first attempts to solve the transient heat conduction problem by combining the recently proposed local knot method(LKM)with the dual reciprocity method(DRM).Firstly,the temporal derivative is discretized by a finite difference scheme,and thus the governing equation of transient heat transfer is transformed into a non-homogeneous modified Helmholtz equation.Secondly,the solution of the non-homogeneous modified Helmholtz equation is decomposed into a particular solution and a homogeneous solution.And then,the DRM and LKM are used to solve the particular solution of the non-homogeneous equation and the homogeneous solution of the modified Helmholtz equation,respectively.The LKM is a recently proposed local radial basis function collocationmethod with themerits of being simple,accurate,and free ofmesh and integration.Compared with the traditional domain-type and boundary-type schemes,the present coupling algorithm could be treated as a really good alternative for the analysis of transient heat conduction on high-dimensional and complicated domains.Numerical experiments,including two-and three-dimensional heat transfer models,demonstrated the effectiveness and accuracy of the new methodology.
基金supported by the NSF under Grant DMS-2208391sponsored by the NSF under Grant DMS-1753581.
文摘This paper provides a study on the stability and time-step constraints of solving the linearized Korteweg-de Vries(KdV)equation,using implicit-explicit(IMEX)Runge-Kutta(RK)time integration methods combined with either finite difference(FD)or local discontinuous Galerkin(DG)spatial discretization.We analyze the stability of the fully discrete scheme,on a uniform mesh with periodic boundary conditions,using the Fourier method.For the linearized KdV equation,the IMEX schemes are stable under the standard Courant-Friedrichs-Lewy(CFL)conditionτ≤λh.Here,λis the CFL number,τis the time-step size,and h is the spatial mesh size.We study several IMEX schemes and characterize their CFL number as a function ofθ=d/h^(2)with d being the dispersion coefficient,which leads to several interesting observations.We also investigate the asymptotic behaviors of the CFL number for sufficiently refined meshes and derive the necessary conditions for the asymptotic stability of the IMEX-RK methods.Some numerical experiments are provided in the paper to illustrate the performance of IMEX methods under different time-step constraints.
基金The authors thank the editor and anonymous reviewers for their constructive comments on the manuscript.The research of the authors was supported by the Natural Science Foundation of Jiangsu Province(No.BK20150795)the Fundamental Research Funds for the Central Universities(No.2018B16714)+3 种基金the National Natural Science Foundation of China(Nos.11702083,51679150,51579153,51739008,51527811)the State Key Laboratory of Mechanics and Control of Mechanical Structures(Nanjing University of Aeronautics and Astronautics)(No.MCMS-0218G01)the National Key R&D Program of China(No.2016YFC0401902)the Fund Project of NHRI(Nos.Y417002,Y417015).
文摘The aim of this paper is to propose a fast meshless numerical scheme for the simulation of non-linear Schrodinger equations.In the proposed scheme,the implicit-Euler scheme is used for the temporal discretization and the localized method of approximate particular solution(LMAPS)is utilized for the spatial discretization.The multiple-scale technique is introduced to obtain the shape parameters of the multiquadric radial basis function for 2D problems and the Gaussian radial basis function for 3D problems.Six numerical examples are carried out to verify the accuracy and efficiency of the proposed scheme.Compared with well-known techniques,numerical results illustrate that the proposed scheme is of merits being easy-to-program,high accuracy,and rapid convergence even for long-term problems.These results also indicate that the proposed scheme has great potential in large scale problems and real-world applications.
基金The work described in this paper was supported by the National Natural Science Foundation of China(Nos.11872220,11772119)the Natural Science Foundation of Shandong Province of China(Nos.2019KJI009,ZR2017JL004)+1 种基金the Six Talent Peaks Project in Jiangsu Province of China(Grant No.2019-KTHY-009)the Key Laboratory of Road Construction Technology and Equipment(Chang’an University,Grant No.300102251505).
文摘The localized method of fundamental solutions(LMFS)is a relatively new meshless boundary collocation method.In the LMFS,the global MFS approxima-tion which is expensive to evaluate is replaced by local MFS formulation defined in a set of overlapping subdomains.The LMFS algorithm therefore converts differential equations into sparse rather than dense matrices which are much cheaper to calcu-late.This paper makes thefirst attempt to apply the LMFS,in conjunction with a domain-decomposition technique,for the numerical solution of steady-state heat con-duction problems in two-dimensional(2D)anisotropic layered materials.Here,the layered material is decomposed into several subdomains along the layer-layer inter-faces,and in each of the subdomains,the solution is approximated by using the LMFS expansion.On the subdomain interface,compatibility of temperatures and heatfluxes are imposed.Preliminary numerical experiments illustrate that the proposed domain-decomposition LMFS algorithm is accurate,stable and computationally efficient for the numerical solution of large-scale multi-layered materials.
基金supported by the State Key Program of National Natural Science Foundation of China(11931003)the National Natural Science Foundation of China(41974133)。
文摘In this paper,a local discontinuous Galerkin(LDG)scheme for the time-fractional diffusion equation is proposed and analyzed.The Caputo time-fractional derivative(of orderα,with 0<α<1)is approximated by a finite difference method with an accuracy of order3-α,and the space discretization is based on the LDG method.For the finite difference method,we summarize and supplement some previous work by others,and apply it to the analysis of the convergence and stability of the proposed scheme.The optimal error estimate is obtained in the L2norm,indicating that the scheme has temporal(3-α)th-order accuracy and spatial(k+1)th-order accuracy,where k denotes the highest degree of a piecewise polynomial in discontinuous finite element space.The numerical results are also provided to verify the accuracy and efficiency of the considered scheme.
基金the National Natural Science Foundation of China(Nos.11671251 and 12101266).
文摘This paper aims to numerically study the generalized time-fractional Burgers equation in two spatial dimensions using the L1/LDG method. Here the L1 scheme is used to approximate the time-fractional derivative, i.e., Caputo derivative, while the local discontinuous Galerkin (LDG) method is used to discretize the spatial derivative. If the solution has strong temporal regularity, i.e., its second derivative with respect to time being right continuous, then the L1 scheme on uniform meshes (uniform L1 scheme) is utilized. If the solution has weak temporal regularity, i.e., its first and/or second derivatives with respect to time blowing up at the starting time albeit the function itself being right continuous at the beginning time, then the L1 scheme on non-uniform meshes (non-uniform L1 scheme) is applied. Then both uniform L1/LDG and non-uniform L1/LDG schemes are constructed. They are both numerically stable and the \(L^2\) optimal error estimate for the velocity is obtained. Numerical examples support the theoretical analysis.
基金supported by the NSFC Grant no.12271492the Natural Science Foundation of Henan Province of China Grant no.222300420550+1 种基金supported by the NSFC Grant no.12271498the National Key R&D Program of China Grant no.2022YFA1005202/2022YFA1005200.
文摘Due to the coupling between the hydrodynamic equation and the phase-field equation in two-phase incompressible flows,it is desirable to develop efficient and high-order accurate numerical schemes that can decouple these two equations.One popular and efficient strategy is to add an explicit stabilizing term to the convective velocity in the phase-field equation to decouple them.The resulting schemes are only first-order accurate in time,and it seems extremely difficult to generalize the idea of stabilization to the second-order or higher version.In this paper,we employ the spectral deferred correction method to improve the temporal accuracy,based on the first-order decoupled and energy-stable scheme constructed by the stabilization idea.The novelty lies in how the decoupling and linear implicit properties are maintained to improve the efficiency.Within the framework of the spatially discretized local discontinuous Galerkin method,the resulting numerical schemes are fully decoupled,efficient,and high-order accurate in both time and space.Numerical experiments are performed to validate the high-order accuracy and efficiency of the methods for solving phase-field models of two-phase incompressible flows.
文摘This study examines the multicriteria scheduling problem on a single machine to minimize three criteria: the maximum cost function, denoted by maximum late work (V<sub>max</sub>), maximum tardy job, denoted by (T<sub>max</sub>), and maximum earliness (E<sub>max</sub>). We propose several algorithms based on types of objectives function to be optimized when dealing with simultaneous minimization problems with and without weight and hierarchical minimization problems. The proposed Algorithm (3) is to find the set of efficient solutions for 1//F (V<sub>max</sub>, T<sub>max</sub>, E<sub>max</sub>) and 1//(V<sub>max</sub> + T<sub>max</sub> + E<sub>max</sub>). The Local Search Heuristic Methods (Descent Method (DM), Simulated Annealing (SA), Genetic Algorithm (GA), and the Tree Type Heuristics Method (TTHM) are applied to solve all suggested problems. Finally, the experimental results of Algorithm (3) are compared with the results of the Branch and Bound (BAB) method for optimal and Pareto optimal solutions for smaller instance sizes and compared to the Local Search Heuristic Methods for large instance sizes. These results ensure the efficiency of Algorithm (3) in a reasonable time.
基金Project supported by the National 973 Program (No.2004CB719402), the National Natural Science Foundation of China (No. 10372030)the Open Research Projects supported by the Project Fund of the Hubei Province Key Lab of Mechanical Transmission & Manufacturing Engineering Wuhan University of Science & Technology (No.2003A16).
文摘Nonlinear formulations of the meshless local Petrov-Galerkin (MLPG) method are presented for geometrically nonlinear problems. The method requires no mesh in computation and therefore avoids mesh distortion difficulties in the large deformation analysis. The essential boundary conditions in the present formulation axe imposed by a penalty method. An incremental and iterative solution procedure is used to solve geometrically nonlinear problems. Several examples are presented to demonstrate the effectiveness of the method in geometrically nonlinear problems analysis. Numerical results show that the MLPG method is an effective one and that the values of the unknown variable are quite accurate.
基金supported by the National Natural Science Foundation of China(11390363 and 11172041)Beijing Higher Education Young Elite Teacher Project(YETP1190)
文摘A local pseudo arc-length method(LPALM)for solving hyperbolic conservation laws is presented in this paper.The key idea of this method comes from the original arc-length method,through which the critical points are bypassed by transforming the computational space.The method is based on local changes of physical variables to choose the discontinuous stencil and introduce the pseudo arc-length parameter,and then transform the governing equations from physical space to arc-length space.In order to solve these equations in arc-length coordinate,it is necessary to combine the velocity of mesh points in the moving mesh method,and then convert the physical variable in arclength space back to physical space.Numerical examples have proved the effectiveness and generality of the new approach for linear equation,nonlinear equation and system of equations with discontinuous initial values.Non-oscillation solution can be obtained by adjusting the parameter and the mesh refinement number for problems containing both shock and rarefaction waves.
基金the Scientific Foundation of National Outstanding Youth of China(No.50225520)the Science Foundation of Shandong University of Technology of China(No.2006KJM33).
文摘The objectives of this study are to employ the meshless local Petrov-Galerkin method (MLPGM) to solve three-dimensional shell problems. The computational accuracy of MLPGM for shell problems is affected by many factors, including the dimension of compact support domain, the dimension of quadrture domain, the number of integral cells and the number of Gauss points. These factors' sensitivity analysis is to adopt the Taguchi experimental design technology and point out the dimension of the quadrature domain with the largest influence on the computational accuracy of the present MLPGM for shells and give out the optimum combination of these factors. A few examples are given to verify the reliability and good convergence of MLPGM for shell problems compared to the theoretical or the finite element results.
基金Project([2005]205)supported by the Science and Technology Planning Project of Water Resources Department of Guangdong Province,ChinaProject(2012-7)supported by Guangdong Bureau of Highway Administration,ChinaProject(2012210020203)supported by the Fundamental Research Funds for the Central Universities,China
文摘Employing an ideal elasto-plastic model,the typically used strength reduction method reduced the strength of all soil elements of a slope.Therefore,this method was called the global strength reduction method(GSRM).However,the deformation field obtained by GSRM could not reflect the real deformation of a slope when the slope became unstable.For most slopes,failure occurs once the strength of some regional soil is sufficiently weakened; thus,the local strength reduction method(LSRM)was proposed to analyze slope stability.In contrast with GSRM,LSRM only reduces the strength of local soil,while the strength of other soil remains unchanged.Therefore,deformation by LSRM is more reasonable than that by GSRM.In addition,the accuracy of the slope's deformation depends on the constitutive model to a large degree,and the variable-modulus elasto-plastic model was thus adopted.This constitutive model was an improvement of the Duncan–Chang model,which modified soil's deformation modulus according to stress level,and it thus better reflected the plastic feature of soil.Most importantly,the parameters of the variable-modulus elasto-plastic model could be determined through in-situ tests,and parameters determination by plate loading test and pressuremeter test were introduced.Therefore,it is easy to put this model into practice.Finally,LSRM and the variable-modulus elasto-plastic model were used to analyze Egongdai ancient landslide.Safety factor,deformation field,and optimal reinforcement measures for Egongdai ancient landslide were obtained based on the proposed method.
文摘In this study, a multivariate local quadratic polynomial regression(MLQPR) method is proposed to design a model for the sludge volume index(SVI). In MLQPR, a quadratic polynomial regression function is established to describe the relationship between SVI and the relative variables, and the important terms of the quadratic polynomial regression function are determined by the significant test of the corresponding coefficients. Moreover, a local estimation method is introduced to adjust the weights of the quadratic polynomial regression function to improve the model accuracy. Finally, the proposed method is applied to predict the SVI values in a real wastewater treatment process(WWTP). The experimental results demonstrate that the proposed MLQPR method has faster testing speed and more accurate results than some existing methods.
基金The National Basic Research Program of China under contract Nos 2017YFC1404100,2017YFC1404103 and 2017YFC1404104the National Natural Science Foundation of China under contract No.41676088。
文摘This paper presents an improved approach based on the equivalent-weights particle filter(EWPF)that uses the proposal density to effectively improve the traditional particle filter.The proposed approach uses historical data to calculate statistical observations instead of the future observations used in the EWPF’s proposal density and draws on the localization scheme used in the localized PF(LPF)to construct the localized EWPF.The new approach is called the statistical observation localized EWPF(LEWPF-Sobs);it uses statistical observations that are better adapted to the requirements of real-time assimilation and the localization function is used to calculate weights to reduce the effect of missing observations on the weights.This approach not only retains the advantages of the EWPF,but also improves the assimilation quality when using sparse observations.Numerical experiments performed with the Lorenz 96 model show that the statistical observation EWPF is better than the EWPF and EAKF when the model uses standard distribution observations.Comparisons of the statistical observation localized EWPF and LPF reveal the advantages of the new method,with fewer particles giving better results.In particular,the new improved filter performs better than the traditional algorithms when the observation network contains densely spaced measurements associated with model state nonlinearities.
文摘The meshless method is a new numerical technique presented in recent years.It uses the moving least square(MLS)approximation as a shape function.The smoothness of the MLS approximation is determined by that of the basic function and of the weight function,and is mainly determined by that of the weight function.Therefore,the weight function greatly affects the accuracy of results obtained.Different kinds of weight functions,such as the spline function, the Gauss function and so on,are proposed recently by many researchers.In the present work,the features of various weight functions are illustrated through solving elasto-static problems using the local boundary integral equation method.The effect of various weight functions on the accuracy, convergence and stability of results obtained is also discussed.Examples show that the weight function proposed by Zhou Weiyuan and Gauss and the quartic spline weight function are better than the others if parameters c and α in Gauss and exponential weight functions are in the range of reasonable values,respectively,and the higher the smoothness of the weight function,the better the features of the solutions.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 11261035,11171038,and 10771019)the Science Research Foundation of Institute of Higher Education of Inner Mongolia Autonomous Region,China (Grant No. NJZZ12198)the Natural Science Foundation of Inner Mongolia Autonomous Region,China (Grant No. 2012MS0102)
文摘In this paper,we present the local discontinuous Galerkin method for solving Burgers' equation and the modified Burgers' equation.We describe the algorithm formulation and practical implementation of the local discontinuous Galerkin method in detail.The method is applied to the solution of the one-dimensional viscous Burgers' equation and two forms of the modified Burgers' equation.The numerical results indicate that the method is very accurate and efficient.