This paper gives internal characterizations of some sequence covering compact images and compact covering compact images of paracompact locally compact spaces, which improve some results on compact images of locally...This paper gives internal characterizations of some sequence covering compact images and compact covering compact images of paracompact locally compact spaces, which improve some results on compact images of locally compact metric spaces.展开更多
In this note, we consider the multipliers on weighted function spaces over totally disconnected locally compact abelian groups (Vilenkin groups). Firstly we show an (H1 ,L ) multiplier result. We also give an (Hap ,Ha...In this note, we consider the multipliers on weighted function spaces over totally disconnected locally compact abelian groups (Vilenkin groups). Firstly we show an (H1 ,L ) multiplier result. We also give an (Hap ,Hap) multiplier result under a similiar condition of Lu Yang type. In section 2, we obtain a result about the boundedness of multipliers on weighted Besov spaces.展开更多
Three classical compactification procedures are presented with nonstandard flavour. This is to illustrate the applicability of Nonstandard analytic tool to beginners interested in Nonstandard analytic methods. The gen...Three classical compactification procedures are presented with nonstandard flavour. This is to illustrate the applicability of Nonstandard analytic tool to beginners interested in Nonstandard analytic methods. The general procedure is as follows: A suitable equivalence relation is defined on an enlargement <sup>*</sup><em>X </em>of the space <em>X</em> which is a completely regular space or a locally compact Hausdorff space or a locally compact Abelian group. Accordingly, every <em>f</em> in <em>C</em>(<em>X</em>,<em>R</em>) (the space of bounded continuous real valued functions on <em>X</em>) or <em>Cc</em>(<em>X</em>,<em>R</em>) (the space of continuous real valued functions on <em>X</em> with compact support) or the dual group <span style="white-space:nowrap;">Γ </span>of the locally compact Abelian group <em>G</em> is extended to the set <img alt="" src="Edit_b9535172-924d-44f0-bab3-c49db17a3b7a.png" /> of the above mentioned equivalence classes. A compact topology on <img alt="" src="Edit_9d7962a3-b8a3-4693-b62a-078c8c4b4853.png" /> is obtained as the weak topology generated by these extensions of <em>f</em>. Then <em>X</em> is naturally imbedded densely in <img alt="" src="Edit_f7d403b2-eff3-4555-b8e7-1b106e06d2e7.png" />.展开更多
The concept of locally strong compactness on domains is generalized to general topological spaces. It is proved that for each distributive hypercontinuous lattice L, the space SpecL of nonunit prime elements endowed w...The concept of locally strong compactness on domains is generalized to general topological spaces. It is proved that for each distributive hypercontinuous lattice L, the space SpecL of nonunit prime elements endowed with the hull-kernel topology is locally strongly compact, and for each locally strongly compact space X, the complete lattice of all open sets O(X) is distributive hypercontinuous. For the case of distributive hyperalgebraic lattices, the similar result is given. For a sober space X, it is shown that there is an order reversing isomorphism between the set of upper-open filters of the lattice O(X) of open subsets of X and the set of strongly compact saturated subsets of X, which is analogous to the well-known Hofmann-Mislove Theorem.展开更多
文摘This paper gives internal characterizations of some sequence covering compact images and compact covering compact images of paracompact locally compact spaces, which improve some results on compact images of locally compact metric spaces.
文摘In this note, we consider the multipliers on weighted function spaces over totally disconnected locally compact abelian groups (Vilenkin groups). Firstly we show an (H1 ,L ) multiplier result. We also give an (Hap ,Hap) multiplier result under a similiar condition of Lu Yang type. In section 2, we obtain a result about the boundedness of multipliers on weighted Besov spaces.
文摘Three classical compactification procedures are presented with nonstandard flavour. This is to illustrate the applicability of Nonstandard analytic tool to beginners interested in Nonstandard analytic methods. The general procedure is as follows: A suitable equivalence relation is defined on an enlargement <sup>*</sup><em>X </em>of the space <em>X</em> which is a completely regular space or a locally compact Hausdorff space or a locally compact Abelian group. Accordingly, every <em>f</em> in <em>C</em>(<em>X</em>,<em>R</em>) (the space of bounded continuous real valued functions on <em>X</em>) or <em>Cc</em>(<em>X</em>,<em>R</em>) (the space of continuous real valued functions on <em>X</em> with compact support) or the dual group <span style="white-space:nowrap;">Γ </span>of the locally compact Abelian group <em>G</em> is extended to the set <img alt="" src="Edit_b9535172-924d-44f0-bab3-c49db17a3b7a.png" /> of the above mentioned equivalence classes. A compact topology on <img alt="" src="Edit_9d7962a3-b8a3-4693-b62a-078c8c4b4853.png" /> is obtained as the weak topology generated by these extensions of <em>f</em>. Then <em>X</em> is naturally imbedded densely in <img alt="" src="Edit_f7d403b2-eff3-4555-b8e7-1b106e06d2e7.png" />.
基金Project supported by the National Natural Science Foundation of China (Nos. 10331010, 10861007)the Foundation for the Author of National Excellent Doctoral Dissertation of China (No. 2007B14)+2 种基金the Jiangxi Provincial Natural Science Foundation of China (Nos. 0411025, 2007GZS0179)the Foundation of the Education Department of Jiangxi Province (No. GJJ08162)the Doctoral Fund of Jiangxi Normal University
文摘The concept of locally strong compactness on domains is generalized to general topological spaces. It is proved that for each distributive hypercontinuous lattice L, the space SpecL of nonunit prime elements endowed with the hull-kernel topology is locally strongly compact, and for each locally strongly compact space X, the complete lattice of all open sets O(X) is distributive hypercontinuous. For the case of distributive hyperalgebraic lattices, the similar result is given. For a sober space X, it is shown that there is an order reversing isomorphism between the set of upper-open filters of the lattice O(X) of open subsets of X and the set of strongly compact saturated subsets of X, which is analogous to the well-known Hofmann-Mislove Theorem.