In this paper,a tunable locally resonant metamaterial is proposed for low-frequency band gaps.The local resonator composed of two pairs of folded slender beams and a proof mass is designed based on the theory of compl...In this paper,a tunable locally resonant metamaterial is proposed for low-frequency band gaps.The local resonator composed of two pairs of folded slender beams and a proof mass is designed based on the theory of compliant mechanism.The design optimization on geometric parameters is carried out to fulfil the quasi-zero-stiffness property.The locally resonant metamaterial is formed by periodically arranged unit cells,and the transmittance of longitudinal wave is studied through three aspects:numerical predictions,finite element simulations and experimental tests.The variation trends revealed by these three methods match well with one another:the band gap moves to lower frequency and both its depth and width get smaller and smaller with the increase of pre-compression(Δ).The band gap overlays the frequency range of 73.10–92.38 Hz and 16.78–19.49 Hz atΔ=0mm andΔ=10mm,respectively,providing a wide range of tunability.Besides,the ultralow-frequency band gap can be achieved asΔapproaches 10 mm.This study may provide an avenue for achieving the tunable ultralow-frequency locally resonant band gap.展开更多
基金The authors gratefully acknowledge the support from the National Natural Science Foundation of China(11972152,11832009)the National Key R&D Program of China(2017YFB1102801)the Laboratory of Science and Technology on Integrated Logistics Support.
文摘In this paper,a tunable locally resonant metamaterial is proposed for low-frequency band gaps.The local resonator composed of two pairs of folded slender beams and a proof mass is designed based on the theory of compliant mechanism.The design optimization on geometric parameters is carried out to fulfil the quasi-zero-stiffness property.The locally resonant metamaterial is formed by periodically arranged unit cells,and the transmittance of longitudinal wave is studied through three aspects:numerical predictions,finite element simulations and experimental tests.The variation trends revealed by these three methods match well with one another:the band gap moves to lower frequency and both its depth and width get smaller and smaller with the increase of pre-compression(Δ).The band gap overlays the frequency range of 73.10–92.38 Hz and 16.78–19.49 Hz atΔ=0mm andΔ=10mm,respectively,providing a wide range of tunability.Besides,the ultralow-frequency band gap can be achieved asΔapproaches 10 mm.This study may provide an avenue for achieving the tunable ultralow-frequency locally resonant band gap.