The complete space-like hypersurfaces with constant normal saclar curvature is discussed in a locally symmetric Lorentz space. A classified theorem is obtained by the operator L1 introduced by S Y Cheng and S T Yau [3].
The rigidity of spacelike hypersurface Mn immersed in locally symmetric space M1n+1 is investigated,where the(normalized)scalar curvature R and mean curvature H of Mn satisfy R=aH+b,and a,b are real constants.First,an...The rigidity of spacelike hypersurface Mn immersed in locally symmetric space M1n+1 is investigated,where the(normalized)scalar curvature R and mean curvature H of Mn satisfy R=aH+b,and a,b are real constants.First,an estimate of the upper bound of the function L(nH)is given,where L is a second-order differential operator.Then,under the assumption that the square norm of the second fundamental form is bounded by a given positive constant,it is proved that Mn must be either totally umbilical or contain two distinct principle curvatures,one of which is simple.Moreover,a similar result is obtained for complete noncompact spacelike hypersurfaces in locally symmetric Einstein spacetime.Hence,some known rigidity results for hypersurface with constant scalar curvature are extended for the linear Weingarten case.展开更多
基金Supported the NSF of the Education Department of Jiangsu Province(04KJD110192)
文摘The complete space-like hypersurfaces with constant normal saclar curvature is discussed in a locally symmetric Lorentz space. A classified theorem is obtained by the operator L1 introduced by S Y Cheng and S T Yau [3].
基金The Natural Science Foundation of Jiangsu Province(No.BK20161412)the Fundamental Research Funds for the Central Universitiesthe Scientific Innovation Research of College Graduates in Jiangsu Province(No.KYCX17_0041)
文摘The rigidity of spacelike hypersurface Mn immersed in locally symmetric space M1n+1 is investigated,where the(normalized)scalar curvature R and mean curvature H of Mn satisfy R=aH+b,and a,b are real constants.First,an estimate of the upper bound of the function L(nH)is given,where L is a second-order differential operator.Then,under the assumption that the square norm of the second fundamental form is bounded by a given positive constant,it is proved that Mn must be either totally umbilical or contain two distinct principle curvatures,one of which is simple.Moreover,a similar result is obtained for complete noncompact spacelike hypersurfaces in locally symmetric Einstein spacetime.Hence,some known rigidity results for hypersurface with constant scalar curvature are extended for the linear Weingarten case.