Recent development of wireless communication technologies and the popularity of smart phones .are making location-based services (LBS) popular. However, requesting queries to LBS servers with users' exact locations...Recent development of wireless communication technologies and the popularity of smart phones .are making location-based services (LBS) popular. However, requesting queries to LBS servers with users' exact locations may threat the privacy of users. Therefore, there have been many researches on generating a cloaked query region for user privacy protection. Consequently, an efficient query processing algorithm for a query region is required. So, in this paper, we propose k-nearest neighbor query (k-NN) processing algorithms for a query region in road networks. To efficiently retrieve k-NN points of interest (POIs), we make use of the Island index. We also propose a method that generates an adaptive Island index to improve the query processing performance and storage usage. Finally, we show by our performance analysis that our k-NN query processing algorithms outperform the existing k-Range Nearest Neighbor (kRNN) algorithm in terms of network expansion cost and query processing time.展开更多
基金supported by the Korea Institute of Science and Technology Information (KISTI)
文摘Recent development of wireless communication technologies and the popularity of smart phones .are making location-based services (LBS) popular. However, requesting queries to LBS servers with users' exact locations may threat the privacy of users. Therefore, there have been many researches on generating a cloaked query region for user privacy protection. Consequently, an efficient query processing algorithm for a query region is required. So, in this paper, we propose k-nearest neighbor query (k-NN) processing algorithms for a query region in road networks. To efficiently retrieve k-NN points of interest (POIs), we make use of the Island index. We also propose a method that generates an adaptive Island index to improve the query processing performance and storage usage. Finally, we show by our performance analysis that our k-NN query processing algorithms outperform the existing k-Range Nearest Neighbor (kRNN) algorithm in terms of network expansion cost and query processing time.