The smart card-based automated fare collection (AFC) system has become the main method for collecting urban bus and rail transit fares in many cities worldwide. Such smart card technologies provide new opportunities...The smart card-based automated fare collection (AFC) system has become the main method for collecting urban bus and rail transit fares in many cities worldwide. Such smart card technologies provide new opportunities for transportation data collection since the transaction data obtained through AFC system contains a significant amount of archived information which can be gathered and leveraged to help estimate public transit origin–destination matrices. Boarding location detection is an important step particularly when there is no automatic vehicle location (AVL) system or GPS information in the database in some cases. With the analysis of raw data without AVL information in this paper, an algorithm for trip direction detection is built and the directions for any bus in operation can be confirmed. The transaction interval between each adjacent record will also be analyzed to detect the boarding clusters for all trips in sequence. Boarding stops will then be distributed with the help of route information and operation schedules. Finally, the feasibility and practicality of the methodology are tested using the bus transit smart card data collected in Guangzhou, China.展开更多
基金The United States Department of Transportation, University Transportation Center through the Center for Advanced Multimodal Mobility Solutions and Education (CAMMSE) at The University of North Carolina at Charlotte (Grant Number: 69A3551747133) for sponsoring this research project entitled ‘estimation of origin–destination matrix and identification of user activities using public transit smart card data’
文摘The smart card-based automated fare collection (AFC) system has become the main method for collecting urban bus and rail transit fares in many cities worldwide. Such smart card technologies provide new opportunities for transportation data collection since the transaction data obtained through AFC system contains a significant amount of archived information which can be gathered and leveraged to help estimate public transit origin–destination matrices. Boarding location detection is an important step particularly when there is no automatic vehicle location (AVL) system or GPS information in the database in some cases. With the analysis of raw data without AVL information in this paper, an algorithm for trip direction detection is built and the directions for any bus in operation can be confirmed. The transaction interval between each adjacent record will also be analyzed to detect the boarding clusters for all trips in sequence. Boarding stops will then be distributed with the help of route information and operation schedules. Finally, the feasibility and practicality of the methodology are tested using the bus transit smart card data collected in Guangzhou, China.