期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Extracting bus transit boarding stop information using smart card transaction data
1
作者 Zhen Chen Wei Fan 《Journal of Modern Transportation》 2018年第3期209-219,共11页
The smart card-based automated fare collection (AFC) system has become the main method for collecting urban bus and rail transit fares in many cities worldwide. Such smart card technologies provide new opportunities... The smart card-based automated fare collection (AFC) system has become the main method for collecting urban bus and rail transit fares in many cities worldwide. Such smart card technologies provide new opportunities for transportation data collection since the transaction data obtained through AFC system contains a significant amount of archived information which can be gathered and leveraged to help estimate public transit origin–destination matrices. Boarding location detection is an important step particularly when there is no automatic vehicle location (AVL) system or GPS information in the database in some cases. With the analysis of raw data without AVL information in this paper, an algorithm for trip direction detection is built and the directions for any bus in operation can be confirmed. The transaction interval between each adjacent record will also be analyzed to detect the boarding clusters for all trips in sequence. Boarding stops will then be distributed with the help of route information and operation schedules. Finally, the feasibility and practicality of the methodology are tested using the bus transit smart card data collected in Guangzhou, China. 展开更多
关键词 Transit smart card Automated fare collection Boarding location inference
下载PDF
Privacy Protection Algorithm for the Internet of Vehicles Based on Local Differential Privacy and Game Model 被引量:5
2
作者 Wenxi Han Mingzhi Cheng +3 位作者 Min Lei Hanwen Xu Yu Yang Lei Qian 《Computers, Materials & Continua》 SCIE EI 2020年第8期1025-1038,共14页
In recent years,with the continuous advancement of the intelligent process of the Internet of Vehicles(IoV),the problem of privacy leakage in IoV has become increasingly prominent.The research on the privacy protectio... In recent years,with the continuous advancement of the intelligent process of the Internet of Vehicles(IoV),the problem of privacy leakage in IoV has become increasingly prominent.The research on the privacy protection of the IoV has become the focus of the society.This paper analyzes the advantages and disadvantages of the existing location privacy protection system structure and algorithms,proposes a privacy protection system structure based on untrusted data collection server,and designs a vehicle location acquisition algorithm based on a local differential privacy and game model.The algorithm first meshes the road network space.Then,the dynamic game model is introduced into the game user location privacy protection model and the attacker location semantic inference model,thereby minimizing the possibility of exposing the regional semantic privacy of the k-location set while maximizing the availability of the service.On this basis,a statistical method is designed,which satisfies the local differential privacy of k-location sets and obtains unbiased estimation of traffic density in different regions.Finally,this paper verifies the algorithm based on the data set of mobile vehicles in Shanghai.The experimental results show that the algorithm can guarantee the user’s location privacy and location semantic privacy while satisfying the service quality requirements,and provide better privacy protection and service for the users of the IoV. 展开更多
关键词 The Internet of Vehicles privacy protection local differential privacy location semantic inference attack game theory
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部