期刊文献+
共找到369篇文章
< 1 2 19 >
每页显示 20 50 100
Social Robot Detection Method with Improved Graph Neural Networks
1
作者 Zhenhua Yu Liangxue Bai +1 位作者 Ou Ye Xuya Cong 《Computers, Materials & Continua》 SCIE EI 2024年第2期1773-1795,共23页
Social robot accounts controlled by artificial intelligence or humans are active in social networks,bringing negative impacts to network security and social life.Existing social robot detection methods based on graph ... Social robot accounts controlled by artificial intelligence or humans are active in social networks,bringing negative impacts to network security and social life.Existing social robot detection methods based on graph neural networks suffer from the problem of many social network nodes and complex relationships,which makes it difficult to accurately describe the difference between the topological relations of nodes,resulting in low detection accuracy of social robots.This paper proposes a social robot detection method with the use of an improved neural network.First,social relationship subgraphs are constructed by leveraging the user’s social network to disentangle intricate social relationships effectively.Then,a linear modulated graph attention residual network model is devised to extract the node and network topology features of the social relation subgraph,thereby generating comprehensive social relation subgraph features,and the feature-wise linear modulation module of the model can better learn the differences between the nodes.Next,user text content and behavioral gene sequences are extracted to construct social behavioral features combined with the social relationship subgraph features.Finally,social robots can be more accurately identified by combining user behavioral and relationship features.By carrying out experimental studies based on the publicly available datasets TwiBot-20 and Cresci-15,the suggested method’s detection accuracies can achieve 86.73%and 97.86%,respectively.Compared with the existing mainstream approaches,the accuracy of the proposed method is 2.2%and 1.35%higher on the two datasets.The results show that the method proposed in this paper can effectively detect social robots and maintain a healthy ecological environment of social networks. 展开更多
关键词 social robot detection social relationship subgraph graph attention network feature linear modulation behavioral gene sequences
下载PDF
Deep Learning Social Network Access Control Model Based on User Preferences
2
作者 Fangfang Shan Fuyang Li +3 位作者 Zhenyu Wang Peiyu Ji Mengyi Wang Huifang Sun 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第7期1029-1044,共16页
A deep learning access controlmodel based on user preferences is proposed to address the issue of personal privacy leakage in social networks.Firstly,socialusers andsocialdata entities are extractedfromthe social netw... A deep learning access controlmodel based on user preferences is proposed to address the issue of personal privacy leakage in social networks.Firstly,socialusers andsocialdata entities are extractedfromthe social networkandused to construct homogeneous and heterogeneous graphs.Secondly,a graph neural networkmodel is designed based on user daily social behavior and daily social data to simulate the dissemination and changes of user social preferences and user personal preferences in the social network.Then,high-order neighbor nodes,hidden neighbor nodes,displayed neighbor nodes,and social data nodes are used to update user nodes to expand the depth and breadth of user preferences.Finally,a multi-layer attention network is used to classify user nodes in the homogeneous graph into two classes:allow access and deny access.The fine-grained access control problem in social networks is transformed into a node classification problem in a graph neural network.The model is validated using a dataset and compared with other methods without losing generality.The model improved accuracy by 2.18%compared to the baseline method GraphSAGE,and improved F1 score by 1.45%compared to the baseline method,verifying the effectiveness of the model. 展开更多
关键词 graph neural networks user preferences access control social network
下载PDF
Design and implementation of user information sharing system using location-based services for social network services
3
作者 Donsu Lee Junghoon Shin Sangjun Lee 《Journal of Measurement Science and Instrumentation》 CAS 2012年第2期169-172,共4页
Internet takes a role as a place for communication between people beyond a space simply for the acquisition of information.Recently,social network service(SNS)reflecting human’s basic desire for talking and communica... Internet takes a role as a place for communication between people beyond a space simply for the acquisition of information.Recently,social network service(SNS)reflecting human’s basic desire for talking and communicating with others is focused on around the world.And location-based service(LBS)is a service that provides various life conveniences like improving productivity through location information,such as GPS and WiFi.This paper suggests an application combining LBS and SNS based on Android OS.By using smart phone which is personal mobile information equipment,it combines location information with user information and SNS so that the service can be developed.It also maximizes sharing and use of information via twit based on locations of friends.This proposed system is aims for users to show online identity more actively and more conveniently. 展开更多
关键词 android OS social network service(SNS) location-based service(LBS) Google maps TWITTER Open API
下载PDF
DFE-GCN: Dual Feature Enhanced Graph Convolutional Network for Controversy Detection
4
作者 Chengfei Hua Wenzhong Yang +3 位作者 Liejun Wang Fuyuan Wei KeZiErBieKe HaiLaTi Yuanyuan Liao 《Computers, Materials & Continua》 SCIE EI 2023年第10期893-909,共17页
With the development of social media and the prevalence of mobile devices,an increasing number of people tend to use social media platforms to express their opinions and attitudes,leading to many online controversies.... With the development of social media and the prevalence of mobile devices,an increasing number of people tend to use social media platforms to express their opinions and attitudes,leading to many online controversies.These online controversies can severely threaten social stability,making automatic detection of controversies particularly necessary.Most controversy detection methods currently focus on mining features from text semantics and propagation structures.However,these methods have two drawbacks:1)limited ability to capture structural features and failure to learn deeper structural features,and 2)neglecting the influence of topic information and ineffective utilization of topic features.In light of these phenomena,this paper proposes a social media controversy detection method called Dual Feature Enhanced Graph Convolutional Network(DFE-GCN).This method explores structural information at different scales from global and local perspectives to capture deeper structural features,enhancing the expressive power of structural features.Furthermore,to strengthen the influence of topic information,this paper utilizes attention mechanisms to enhance topic features after each graph convolutional layer,effectively using topic information.We validated our method on two different public datasets,and the experimental results demonstrate that our method achieves state-of-the-art performance compared to baseline methods.On the Weibo and Reddit datasets,the accuracy is improved by 5.92%and 3.32%,respectively,and the F1 score is improved by 1.99%and 2.17%,demonstrating the positive impact of enhanced structural features and topic features on controversy detection. 展开更多
关键词 Controversy detection graph convolutional network feature enhancement social media
下载PDF
Graph Transformer for Communities Detection in Social Networks 被引量:2
5
作者 G.Naga Chandrika Khalid Alnowibet +3 位作者 K.Sandeep Kautish E.Sreenivasa Reddy Adel F.Alrasheedi Ali Wagdy Mohamed 《Computers, Materials & Continua》 SCIE EI 2022年第3期5707-5720,共14页
Graphs are used in various disciplines such as telecommunication,biological networks,as well as social networks.In large-scale networks,it is challenging to detect the communities by learning the distinct properties o... Graphs are used in various disciplines such as telecommunication,biological networks,as well as social networks.In large-scale networks,it is challenging to detect the communities by learning the distinct properties of the graph.As deep learning hasmade contributions in a variety of domains,we try to use deep learning techniques to mine the knowledge from large-scale graph networks.In this paper,we aim to provide a strategy for detecting communities using deep autoencoders and obtain generic neural attention to graphs.The advantages of neural attention are widely seen in the field of NLP and computer vision,which has low computational complexity for large-scale graphs.The contributions of the paper are summarized as follows.Firstly,a transformer is utilized to downsample the first-order proximities of the graph into a latent space,which can result in the structural properties and eventually assist in detecting the communities.Secondly,the fine-tuning task is conducted by tuning variant hyperparameters cautiously,which is applied to multiple social networks(Facebook and Twitch).Furthermore,the objective function(crossentropy)is tuned by L0 regularization.Lastly,the reconstructed model forms communities that present the relationship between the groups.The proposed robust model provides good generalization and is applicable to obtaining not only the community structures in social networks but also the node classification.The proposed graph-transformer shows advanced performance on the social networks with the average NMIs of 0.67±0.04,0.198±0.02,0.228±0.02,and 0.68±0.03 on Wikipedia crocodiles,Github Developers,Twitch England,and Facebook Page-Page networks,respectively. 展开更多
关键词 social networks graph transformer community detection graph classification
下载PDF
Complete Cototal Roman Domination Number of a Graph for User Preference Identification in Social Media
6
作者 J.Maria Regila Baby K.Uma Samundesvari 《Computer Systems Science & Engineering》 SCIE EI 2023年第6期2405-2415,共11页
Many graph domination applications can be expanded to achieve complete cototal domination.If every node in a dominating set is regarded as a record server for a PC organization,then each PC affiliated with the organiz... Many graph domination applications can be expanded to achieve complete cototal domination.If every node in a dominating set is regarded as a record server for a PC organization,then each PC affiliated with the organization has direct access to a document server.It is occasionally reasonable to believe that this gateway will remain available even if one of the scrape servers fails.Because every PC has direct access to at least two documents’servers,a complete cototal dominating set provides the required adaptability to non-critical failure in such scenarios.In this paper,we presented a method for calculating a graph’s complete cototal roman domination number.We also examined the properties and determined the bounds for a graph’s complete cototal roman domination number,and its applications are presented.It has been observed that one’s interest fluctuate over time,therefore inferring them just from one’s own behaviour may be inconclusive.However,it may be able to deduce a user’s constant interest to some level if a user’s networking is also watched for similar or related actions.This research proposes a method that considers a user’s and his channel’s activity,as well as common tags,persons,and organizations from their social media posts in order to establish a solid foundation for the required conclusion. 展开更多
关键词 social media network graph complete cototal roman domination
下载PDF
Semi-GSGCN: Social Robot Detection Research with Graph Neural Network 被引量:1
7
作者 Xiujuan Wang Qianqian Zheng +2 位作者 Kangfeng Zheng Yi Sui Jiayue Zhang 《Computers, Materials & Continua》 SCIE EI 2020年第10期617-638,共22页
Malicious social robots are the disseminators of malicious information on social networks,which seriously affect information security and network environments.Efficient and reliable classification of social robots is ... Malicious social robots are the disseminators of malicious information on social networks,which seriously affect information security and network environments.Efficient and reliable classification of social robots is crucial for detecting information manipulation in social networks.Supervised classification based on manual feature extraction has been widely used in social robot detection.However,these methods not only involve the privacy of users but also ignore hidden feature information,especially the graph feature,and the label utilization rate of semi-supervised algorithms is low.Aiming at the problems of shallow feature extraction and low label utilization rate in existing social network robot detection methods,in this paper a robot detection scheme based on weighted network topology is proposed,which introduces an improved network representation learning algorithm to extract the local structure features of the network,and combined with the graph convolution network(GCN)algorithm based on the graph filter,to obtain the global structure features of the network.An end-to-end semi-supervised combination model(Semi-GSGCN)is established to detect malicious social robots.Experiments on a social network dataset(cresci-rtbust-2019)show that the proposed method has high versatility and effectiveness in detecting social robots.In addition,this method has a stronger insight into robots in social networks than other methods. 展开更多
关键词 social networks social robot detection network representation learning graph convolution network
下载PDF
Visualization of Personal Interest Graph from Social Network
8
作者 WANG Yun-qiao LUO Ming-yang 《Computer Aided Drafting,Design and Manufacturing》 2014年第3期27-31,共5页
The advent of the time of big data along with social networks makes the visualization and analysis of networks information become increasingly important in many fields. Based on the information from social networks, t... The advent of the time of big data along with social networks makes the visualization and analysis of networks information become increasingly important in many fields. Based on the information from social networks, the idea of information visualization and development of tools are presented. Popular social network micro-blog ('Weibo') is chosen to realize the process of users' interest and communications data analysis. User interest visualization methods are discussed and chosen and programs are developed to collect users' interest and describe it by graph. The visualization results may be used to provide the commercial recommendation or social investigation application for decision makers. 展开更多
关键词 information visualization interest graph social networks micro-blog
下载PDF
Research Hotspots and Trends Analysis of Real-World Data Based on Social Network Analysis and Knowledge Graph
9
作者 Li Jiahui Zhao Peiyao Yuan Xiaoliang 《Asian Journal of Social Pharmacy》 2021年第3期272-279,共8页
Objective To study the research status,research hotspots and development trends in the field of real-world data(RWD)through social network analysis and knowledge graph analysis.Methods RWD of the past 10 years were re... Objective To study the research status,research hotspots and development trends in the field of real-world data(RWD)through social network analysis and knowledge graph analysis.Methods RWD of the past 10 years were retrieved,and literature metrological analysis was made by using UCINET and CiteSpace from CNKI.Results and Conclusion The frequency and centrality of related keywords such as real-world study,hospital information system(HIS),drug combination,data mining and TCM are high.The clusters labeled as clinical medication and RWD contain more keywords.In recent 4 years,there are more articles involving the keywords of data specification,data authenticity,data security and information security.Among them,compound Kushen injection,HIS database and RWD are the top three keywords.It is a long-term research hotspot for Chinese and western medicine to use HIS to study clinical medication,clinical characteristics,diseases and injections.Besides,the research of RWD database has changed from construction to standardized collection and governance,which can make RWD effective.Data authenticity,data security and information security will become the new hotspots in the research of RWD. 展开更多
关键词 social network analysis knowledge graph real-world data data specification technical specification
下载PDF
MLDA:a multi-level k-degree anonymity scheme on directed social network graphs
10
作者 Yuanjing HAO Long LI +1 位作者 Liang CHANG Tianlong GU 《Frontiers of Computer Science》 SCIE EI CSCD 2024年第2期199-215,共17页
With the emergence of network-centric data,social network graph publishing is conducive to data analysts to mine the value of social networks,analyze the social behavior of individuals or groups,implement personalized... With the emergence of network-centric data,social network graph publishing is conducive to data analysts to mine the value of social networks,analyze the social behavior of individuals or groups,implement personalized recommendations,and so on.However,published social network graphs are often subject to re-identification attacks from adversaries,which results in the leakage of users’privacy.The-anonymity technology is widely used in the field of graph publishing,which is quite effective to resist re-identification attacks.However,the current researches still exist some issues to be solved:the protection of directed graphs is less concerned than that of undirected graphs;the protection of graph structure is often ignored while achieving the protection of nodes’identities;the same protection is performed for different users,which doesn’t meet the different privacy requirements of users.Therefore,to address the above issues,a multi-level-degree anonymity(MLDA)scheme on directed social network graphs is proposed in this paper.First,node sets with different importance are divided by the firefly algorithm and constrained connectedness upper approximation,and they are performed different-degree anonymity protection to meet the different privacy requirements of users.Second,a new graph anonymity method is proposed,which achieves the addition and removal of edges with the help of fake nodes.In addition,to improve the utility of the anonymized graph,a new edge cost criterion is proposed,which is used to select the most appropriate edge to be removed.Third,to protect the community structure of the original graph as much as possible,fake nodes contained in a same community are merged prior to fake nodes contained in different communities.Experimental results on real datasets show that the newly proposed MLDA scheme is effective to balance the privacy and utility of the anonymized graph. 展开更多
关键词 directed social network graph graph publishing k-degree anonymity community structure graph utility
原文传递
Model for Generating Scale-Free Artificial Social Networks Using Small-World Networks
11
作者 Farhan Amin Gyu Sang Choi 《Computers, Materials & Continua》 SCIE EI 2022年第12期6367-6391,共25页
The Internet of Things(IoT)has the potential to be applied to social networks due to innovative characteristics and sophisticated solutions that challenge traditional uses.Social network analysis(SNA)is a good example... The Internet of Things(IoT)has the potential to be applied to social networks due to innovative characteristics and sophisticated solutions that challenge traditional uses.Social network analysis(SNA)is a good example that has recently gained a lot of scientific attention.It has its roots in social and economic research,as well as the evaluation of network science,such as graph theory.Scientists in this area have subverted predefined theories,offering revolutionary ones regarding interconnected networks,and they have highlighted the mystery of six degrees of separation with confirmation of the small-world phenomenon.The motivation of this study is to understand and capture the clustering properties of large networks and social networks.We present a network growth model in this paper and build a scale-free artificial social network with controllable clustering coefficients.The random walk technique is paired with a triangle generating scheme in our proposed model.As a result,the clustering controlmechanism and preferential attachment(PA)have been realized.This research builds on the present random walk model.We took numerous measurements for validation,including degree behavior and the measure of clustering decay in terms of node degree,among other things.Finally,we conclude that our suggested random walk model is more efficient and accurate than previous state-of-the-art methods,and hence it could be a viable alternative for societal evolution. 展开更多
关键词 social networks small-world networks network generation models graph theory random walk network design social network analysis
下载PDF
OPINION DYNAMICS ON SOCIAL NETWORKS
12
作者 Xing WANG Bingjue JIANG Bo LI 《Acta Mathematica Scientia》 SCIE CSCD 2022年第6期2459-2477,共19页
Opinion dynamics has recently attracted much attention,and there have been a lot of achievements in this area.This paper first gives an overview of the development of opinion dynamics on social networks.We introduce s... Opinion dynamics has recently attracted much attention,and there have been a lot of achievements in this area.This paper first gives an overview of the development of opinion dynamics on social networks.We introduce some classical models of opinion dynamics in detail,including the DeGroot model,the Krause model,O-1 models,sign networks and models related to Gossip algorithms.Inspired by some real life cases,we choose the unit circle as the range of the individuals'opinion values.We prove that the individuals'opinions of the randomized gossip algorithm in which the individuals'opinion values are on the unit circle reaches consensus almost surely. 展开更多
关键词 opinion dynamics social networks graph theory
下载PDF
Novel Epistemic and Predictive Heuristic for Semantic and Dynamic Social Networks Analysis
13
作者 Christophe Thovex Francky Trichet 《Social Networking》 2014年第3期159-172,共14页
Using Kripke semantics, we have identified and reduced an epistemic incompleteness in the metaphor commonly employed in Social Networks Analysis (SNA), which basically compares information flows with current flows in ... Using Kripke semantics, we have identified and reduced an epistemic incompleteness in the metaphor commonly employed in Social Networks Analysis (SNA), which basically compares information flows with current flows in advanced centrality measures. Our theoretical approach defines a new paradigm for the semantic and dynamic analysis of social networks including shared content. Based on our theoretical findings, we define a semantic and predictive model of dynamic SNA for Enterprises Social Networks (ESN), and experiment it on a real dataset. 展开更多
关键词 graph ANALYSIS INTERDISCIPLINARY MODAL Logic SEMANTICS social networks
下载PDF
Selecting Seeds for Competitive Influence Spread Maximization in Social Networks
14
作者 Hong Wu Weiyi Liu +2 位作者 Kun Yue Jin Li Weipeng Huang 《国际计算机前沿大会会议论文集》 2016年第1期153-155,共3页
There exist two or more competing products in viral marketing, and the companies can exploit the social interactions of users to propagate the awareness of products. In this paper, we focus on selecting seeds for maxi... There exist two or more competing products in viral marketing, and the companies can exploit the social interactions of users to propagate the awareness of products. In this paper, we focus on selecting seeds for maximizing the competitive influence spread in social networks. First, we establish the possible graphs based on the propagation probability of edges, and then we use the competitive influence spread model (CISM) to model the competitive spread under the possible graph. Further, we consider the objective function of selecting k seeds of one product under the CISM when the seeds of another product have been known, which is monotone and submodular, and thus we use the CELF (cost-effective lazy forward) algorithm to accelerate the greedy algorithm that can approximate the optimal with 1 ? 1/e. Experimental results verify the feasibility and effectiveness of our method. 展开更多
关键词 social networks COMPETITIVE INFLUENCE SPREAD Possible graph SUBMODULARITY CELF algorithm
下载PDF
Big Data Analytics Using Graph Signal Processing
15
作者 Farhan Amin Omar M.Barukab Gyu Sang Choi 《Computers, Materials & Continua》 SCIE EI 2023年第1期489-502,共14页
The networks are fundamental to our modern world and they appear throughout science and society.Access to a massive amount of data presents a unique opportunity to the researcher’s community.As networks grow in size ... The networks are fundamental to our modern world and they appear throughout science and society.Access to a massive amount of data presents a unique opportunity to the researcher’s community.As networks grow in size the complexity increases and our ability to analyze them using the current state of the art is at severe risk of failing to keep pace.Therefore,this paper initiates a discussion on graph signal processing for large-scale data analysis.We first provide a comprehensive overview of core ideas in Graph signal processing(GSP)and their connection to conventional digital signal processing(DSP).We then summarize recent developments in developing basic GSP tools,including methods for graph filtering or graph learning,graph signal,graph Fourier transform(GFT),spectrum,graph frequency,etc.Graph filtering is a basic task that allows for isolating the contribution of individual frequencies and therefore enables the removal of noise.We then consider a graph filter as a model that helps to extend the application of GSP methods to large datasets.To show the suitability and the effeteness,we first created a noisy graph signal and then applied it to the filter.After several rounds of simulation results.We see that the filtered signal appears to be smoother and is closer to the original noise-free distance-based signal.By using this example application,we thoroughly demonstrated that graph filtration is efficient for big data analytics. 展开更多
关键词 Big data data science big data processing graph signal processing social networks
下载PDF
Public Sentiment Analysis of Social Security Emergencies Based on Feature Fusion Model of BERT and TextLevelGCN
16
作者 Linli Wang Hu Wang Hanlu Lei 《Journal of Computer and Communications》 2023年第5期194-204,共11页
At present, the emotion classification method of Weibo public opinions based on graph neural network cannot solve the polysemy problem well, and the scale of global graph with fixed weight is too large. This paper pro... At present, the emotion classification method of Weibo public opinions based on graph neural network cannot solve the polysemy problem well, and the scale of global graph with fixed weight is too large. This paper proposes a feature fusion network model Bert-TextLevelGCN based on BERT pre-training and improved TextGCN. On the one hand, Bert is introduced to obtain the initial vector input of graph neural network containing rich semantic features. On the other hand, the global graph connection window of traditional TextGCN is reduced to the text level, and the message propagation mechanism of global sharing is applied. Finally, the output vector of BERT and TextLevelGCN is fused by interpolation update method, and a more robust mapping of positive and negative sentiment classification of public opinion text of “Tangshan Barbecue Restaurant beating people” is obtained. In the context of the national anti-gang campaign, it is of great significance to accurately and efficiently analyze the emotional characteristics of public opinion in sudden social violence events with bad social impact, which is of great significance to improve the government’s public opinion warning and response ability to public opinion in sudden social security events. . 展开更多
关键词 social Security Emergencies network Public Opinion Emotion Analysis graph Neural network TextLevelGCN BERT
下载PDF
Local Trade Networks among Farmers and Traders
17
作者 Abdul-Samad Abdul-Rahaman Patience Pokuaa Gambrah 《Social Networking》 2023年第4期93-110,共18页
Both farmers and traders benefit from trade networking, which is crucial for the local economy. Therefore, it is crucial to understand how these networks operate, and how they can be managed more effectively. Througho... Both farmers and traders benefit from trade networking, which is crucial for the local economy. Therefore, it is crucial to understand how these networks operate, and how they can be managed more effectively. Throughout this study, we examine the economic networks formed between farmers and traders through the trade of food products. These networks are analyzed from the perspective of their structure and the factors that influence their development. Using data from 18 farmers and 15 traders, we applied exponential random graph models. The results of our study showed that connectivity, Popularity Spread, activity spread, good transportation systems, and high yields all affected the development of networks. Therefore, farmers’ productivity and high market demand can contribute to local food-crop trade. The network was not affected by reciprocity, open markets, proximity to locations, or trade experience of actors. Policy makers should consider these five factors when formulating policies for local food-crop trade. Additionally, local actors should be encouraged to use these factors to improve their network development. However, it is important to note that these factors alone cannot guarantee success. Policy makers and actors must also consider other factors such as legal frameworks, economic policies, and resource availability. Our approach can be used in future research to determine how traders and farmers can enhance productivity and profit in West Africa. This study addresses a research gap by examining factors influencing local food trade in a developing country. 展开更多
关键词 Local Trade social network Analysis Food Trade Exponential Random graph Models (ERGM) Food Security
下载PDF
双边投资协定网络的演化机制——基于多维邻近性视角 被引量:1
18
作者 王群勇 苗培 李月 《河北经贸大学学报》 CSSCI 北大核心 2024年第3期84-97,共14页
利用社会网络分析方法考察了双边投资协定(BITs)网络的历史演化特征与驱动机制。研究发现,BITs网络大致经历了初步形成、迅猛发展和结构调整三个阶段,呈现出一个较完整的S型增长,网络核心—半核心—边缘结构实现了由“金字塔”向“橄榄... 利用社会网络分析方法考察了双边投资协定(BITs)网络的历史演化特征与驱动机制。研究发现,BITs网络大致经历了初步形成、迅猛发展和结构调整三个阶段,呈现出一个较完整的S型增长,网络核心—半核心—边缘结构实现了由“金字塔”向“橄榄球”的转变。以多维邻近性为视角,运用时间指数随机图模型对BITs网络形成的影响因素进行分析,结果显示,多维邻近性是驱动BITs网络形成的重要力量,经济和制度邻近性对BITs关系的形成有负向影响,贸易水平、地理和社会邻近性对BITs关系的形成有正向影响。然而,2008年金融危机改变了BITs网络的结构特征,金融危机后BITs网络呈现分散化、多边化发展趋势,某些邻近性变量影响不再显著,社会环境类因素成为影响BITs网络的关键因素。 展开更多
关键词 双边投资协定 社会网络 时间指数随机图模型 多维邻近性
下载PDF
基于双流自适应图卷积网络的管制员睡岗行为识别 被引量:1
19
作者 王超 王志锋 李雯清 《安全与环境学报》 CAS CSCD 北大核心 2024年第2期596-601,共6页
为识别空中交通管制员的睡岗行为,减少管制差错,保障航空器飞行安全,提出了一种基于双流自适应图卷积网络的管制员睡岗行为识别方法。该方法设计双流网络分别处理管制员骨架的一阶信息和二阶信息,实现对骨架数据的充分提取;通过自适应... 为识别空中交通管制员的睡岗行为,减少管制差错,保障航空器飞行安全,提出了一种基于双流自适应图卷积网络的管制员睡岗行为识别方法。该方法设计双流网络分别处理管制员骨架的一阶信息和二阶信息,实现对骨架数据的充分提取;通过自适应学习的骨骼拓扑连接矩阵,挖掘管制员不同关节之间的功能连接关系;同时在卷积层引入时空通道注意力机制,增强管制员睡岗行为识别模型在时间、空间、通道3个方向提取重要信息的能力。仿真结果表明,该方法能有效识别管制员3种睡岗行为,相较于传统的时空图卷积网络,识别准确率提高了3.08百分点,达到95.03%,可以提高民航运行安全管理水平。 展开更多
关键词 安全社会工程 睡岗行为 空中交通管制员 自适应图卷积网络 行为识别
下载PDF
基于偏好感知的去噪图卷积网络社交推荐
20
作者 杨兴耀 马帅 +3 位作者 张祖莲 于炯 陈嘉颖 王东晓 《计算机工程》 CAS CSCD 北大核心 2024年第10期154-163,共10页
协同过滤推荐通常面临用户-项目交互数据稀疏的挑战,社交推荐引入用户社交关系来缓解数据稀疏性问题。多数基于图神经网络(GNN)的社交推荐系统在消息传递过程中无法根据用户偏好聚合高阶邻居信息,造成嵌入表示过平滑和噪声问题。针对上... 协同过滤推荐通常面临用户-项目交互数据稀疏的挑战,社交推荐引入用户社交关系来缓解数据稀疏性问题。多数基于图神经网络(GNN)的社交推荐系统在消息传递过程中无法根据用户偏好聚合高阶邻居信息,造成嵌入表示过平滑和噪声问题。针对上述问题,提出一种基于偏好感知的去噪图卷积网络的社交推荐模型PD-GCN。使用无监督学习将具有相似偏好的用户分配到用户-项目交互子图和社交子图,在子图中进行更高阶的图卷积运算,缓解了现有模型的过平滑问题。从全局和局部的角度出发,通过考虑相同偏好用户节点的特征相似度和邻域节点偏好分布多样性识别并去除噪声节点,增强模型对用户-项目交互和社交关系噪声的鲁棒性。在LastFM、Ciao、Yelp 3个公共数据集上的实验结果表明,PD-GCN模型在召回率和归一化折损累计增益两个指标上相较于其他主流模型表现出更优的性能,验证了PD-GCN模型的有效性。 展开更多
关键词 社交推荐 图卷积网络 过平滑 用户偏好 推荐系统
下载PDF
上一页 1 2 19 下一页 到第
使用帮助 返回顶部