An approach of the incompatible elements with additional internal shear strain is,in the presem paper,suggested and applied to geometrically nonlinear analysis of Mi-ndlin plate bending problem.It provides a quite cov...An approach of the incompatible elements with additional internal shear strain is,in the presem paper,suggested and applied to geometrically nonlinear analysis of Mi-ndlin plate bending problem.It provides a quite covenient way to avoid the whear loc-king troubles.An energy consistency condition for this kind of C°elements is offered.The nonlinear element formulations and some numerical results are presented.展开更多
In this paper one-point quadrature'assumed strain'mixed element formulation based on the Hu-Washizu variational principle is presented.Special care is taken to avoid hourglass modes and volumetric locking as w...In this paper one-point quadrature'assumed strain'mixed element formulation based on the Hu-Washizu variational principle is presented.Special care is taken to avoid hourglass modes and volumetric locking as well as shear locking.The assumed strain fields are constructed so that those portions of the fields which lead to volumetric and shear locking phenomena are eliminated by projection,while the implementation of the proposed URI scheme is straightforward to suppress hour- glass modes.In order to treat geometric nonlinearities simply and efficiently,a corotational coordinate system is used.Several numerical examples are given to demonstrate the performance of the suggested formulation,including nonlinear static/dynamic mechanical problems.展开更多
The locking compression plates (LCP) are efficient tools in open reduction and internal fixation (ORIF), especially in osteoporotic bones. Two important factors of screw density and screw position can affect the funct...The locking compression plates (LCP) are efficient tools in open reduction and internal fixation (ORIF), especially in osteoporotic bones. Two important factors of screw density and screw position can affect the functionality of the bone plate. Several studies have assessed the influence of the screw configurations on the bone-plate stiffness, but the effects of screw positions on the interfragmentary strain, εIF of LCP construct have not been investigated yet. In this study, finite element method was used to investigate the influence of screws number and position on the interfragmentary strain of LCP-femur system for a mid-shaft fracture. Results of this study showed that by insertion of screws closer to the fracture site, εIF decreases by 2nd degree polynomial function versus screw position, but by adding the screws from the ends of the plate, or by moving and placing the screws towards the fracture site, the reduction of εIF will be linear. Results of this study were compared and are in agreement with some studies in the literature, even though their scope was mostly stability of the bone-implant system, whereas our scope was focused on the interfragmentary strain.展开更多
文摘An approach of the incompatible elements with additional internal shear strain is,in the presem paper,suggested and applied to geometrically nonlinear analysis of Mi-ndlin plate bending problem.It provides a quite covenient way to avoid the whear loc-king troubles.An energy consistency condition for this kind of C°elements is offered.The nonlinear element formulations and some numerical results are presented.
文摘In this paper one-point quadrature'assumed strain'mixed element formulation based on the Hu-Washizu variational principle is presented.Special care is taken to avoid hourglass modes and volumetric locking as well as shear locking.The assumed strain fields are constructed so that those portions of the fields which lead to volumetric and shear locking phenomena are eliminated by projection,while the implementation of the proposed URI scheme is straightforward to suppress hour- glass modes.In order to treat geometric nonlinearities simply and efficiently,a corotational coordinate system is used.Several numerical examples are given to demonstrate the performance of the suggested formulation,including nonlinear static/dynamic mechanical problems.
文摘The locking compression plates (LCP) are efficient tools in open reduction and internal fixation (ORIF), especially in osteoporotic bones. Two important factors of screw density and screw position can affect the functionality of the bone plate. Several studies have assessed the influence of the screw configurations on the bone-plate stiffness, but the effects of screw positions on the interfragmentary strain, εIF of LCP construct have not been investigated yet. In this study, finite element method was used to investigate the influence of screws number and position on the interfragmentary strain of LCP-femur system for a mid-shaft fracture. Results of this study showed that by insertion of screws closer to the fracture site, εIF decreases by 2nd degree polynomial function versus screw position, but by adding the screws from the ends of the plate, or by moving and placing the screws towards the fracture site, the reduction of εIF will be linear. Results of this study were compared and are in agreement with some studies in the literature, even though their scope was mostly stability of the bone-implant system, whereas our scope was focused on the interfragmentary strain.