A low-noise photodetector is a basic tool for the research of quantum information processing. We present a specially designed low-noise photoelectric detector with a bandwidth of 130 MHz, using a transimpedance amplif...A low-noise photodetector is a basic tool for the research of quantum information processing. We present a specially designed low-noise photoelectric detector with a bandwidth of 130 MHz, using a transimpedance amplification circuit. Based on the detailed calculation of the dependence on each parameter of the detector,a useful method of how to design a low-noise and broadband photodetector is provided. When the optical power is between 1.0 and 16 m W, the photodetector has a good linear response to the injected light. Its electronics noise power is below-77 d Bm, which is within the whole bandwidth. When the incident light power is 2 m W, the output noise powers are 10.0, 8.0, and 6.0 d B higher than the corresponding electronics noise within the bandwidth of 1–50, 50–90, and 90–130 MHz, respectively, which is in good agreement with the theoretical prediction.Thus, this photoelectric detector could have good application prospects in quantum communication and an optical cavity locking system.展开更多
We report on the amplification of high-average-power and high-efficiency picosecond pulses in a self-made verylarge-mode-area Yb-doped photonic crystal fiber(PCF). The PCF with a core diameter of 105 μm and a core ...We report on the amplification of high-average-power and high-efficiency picosecond pulses in a self-made verylarge-mode-area Yb-doped photonic crystal fiber(PCF). The PCF with a core diameter of 105 μm and a core numerical aperture of 0.05 is prepared by the sol-gel method combined with the powder sintering technique. The fiber amplification system produces the highest average power of 255 W at a 10 MHz repetition rate with a 21 ps pulse duration corresponding to a peak power of 1.2 MW. This result exemplifies the high-average-power and high-peak-power potential of this specifically designed fiber.展开更多
基金supported by the Key Project of the Ministry of Science and Technology of China(No.2016YFA0301402)the Natural Science Foundation of China(Nos.11322440,11474190,and 11304190)+1 种基金the FOK YING TUNG Education Foundation,Natural Science Foundation of Shanxi Province(No.2014021001)the Program for Sanjin Scholars of Shanxi Province
文摘A low-noise photodetector is a basic tool for the research of quantum information processing. We present a specially designed low-noise photoelectric detector with a bandwidth of 130 MHz, using a transimpedance amplification circuit. Based on the detailed calculation of the dependence on each parameter of the detector,a useful method of how to design a low-noise and broadband photodetector is provided. When the optical power is between 1.0 and 16 m W, the photodetector has a good linear response to the injected light. Its electronics noise power is below-77 d Bm, which is within the whole bandwidth. When the incident light power is 2 m W, the output noise powers are 10.0, 8.0, and 6.0 d B higher than the corresponding electronics noise within the bandwidth of 1–50, 50–90, and 90–130 MHz, respectively, which is in good agreement with the theoretical prediction.Thus, this photoelectric detector could have good application prospects in quantum communication and an optical cavity locking system.
基金supported by the National“863”Program of China(No.2014AA041901)the National Natural Science Foundation of China(Nos.U1330134 and 61308024)
文摘We report on the amplification of high-average-power and high-efficiency picosecond pulses in a self-made verylarge-mode-area Yb-doped photonic crystal fiber(PCF). The PCF with a core diameter of 105 μm and a core numerical aperture of 0.05 is prepared by the sol-gel method combined with the powder sintering technique. The fiber amplification system produces the highest average power of 255 W at a 10 MHz repetition rate with a 21 ps pulse duration corresponding to a peak power of 1.2 MW. This result exemplifies the high-average-power and high-peak-power potential of this specifically designed fiber.