A thorough analysis on its natural environment as well as social economic status of the hilly-gullied loess region is presented. A small watershed, the dominant landscape unit of the region, has been singled out for f...A thorough analysis on its natural environment as well as social economic status of the hilly-gullied loess region is presented. A small watershed, the dominant landscape unit of the region, has been singled out for further and specific study on landscape pattern and function, its social and economic distinctions. The authors proposed several principles based on its eco-economic background study, which includes water balance and efficient use principle, co-development of grass and agro-forestry principle, location optimization principle. Integrated with detailed analysis of a small watershed, an eco-productive paradigm for the loess land's development based on a small watershed scale was worked out. It consists of circle pattern with villages at core for high efficient agriculture production, hierarchical pattern along the slope for eco-economic development, point-axis pattern for commodity production and circulation in small watersheds and core-margin pattern for exchanges among watersheds.展开更多
[Objective] The aim of this study was to study the influence of plants on the soil moisture content under different fertilization.[Method] Using sainfoin,sweet clover,Astragalus adsurgens,alfalfa,ryegrass,little flowe...[Objective] The aim of this study was to study the influence of plants on the soil moisture content under different fertilization.[Method] Using sainfoin,sweet clover,Astragalus adsurgens,alfalfa,ryegrass,little flower,white clover as experimental material,this study explored the effects of soil moisture on the improvement of soil quality.[Result] Results showed that the soil moisture content of different plants follows as:sainfoin 〉sweet clover 〉Astragalus adsurgens 〉alfalfa perennial ryegrass 〉small crown 〉white clover,and the average moisture content reached 24.13% which was 2.45% higher than that of control group.At planting white clover,sweet clover,under the condition of 7 kinds of crops,in the treatments without fertilizer and with organic fertilizer,soil moisture content of soil in 0-20 cm grew significantly.[Conclusion] The application of organic fertilizer and growing of plants would improve soil moisture in abandoned fields,enhance the ability of soil water supply,and improve soil fertility.展开更多
Safeguarding the elderly population in the countryside is an inherent requirement for alleviating social conflicts in rural areas and effectively carrying out China’s Rural Revitalization.The existing spatial mismatc...Safeguarding the elderly population in the countryside is an inherent requirement for alleviating social conflicts in rural areas and effectively carrying out China’s Rural Revitalization.The existing spatial mismatch between rural elderly service facilities and pop-ulation distribution in China aggravates the imbalance of facility resource space,how to improve the accuracy of demand and supply results and better measuring the spatial fairness of elderly service is significant to realize the optimal allocation of rural elderly service.Based on the above,this study pays attention to the refined needs of the elderly population,and focuses on the spatial equity of the rural elderly facilities,to make up for the short boards of the basic public services in the countryside and realize the all-round rural revitalization.This study takes Huanxian County in the hilly loess area of Longdong,China as an example and explores the spatial equity of rural elderly services by using the Urban Spatial Network Analysis(UNA)to measure the accessible quantity and supply capacity of elderly services.The results found that there were 553 rural eldercare service facilities in Huanxian County,including 285 eldercare facilities and 268 medical and health facilities,and the spatial distribution is characterized by a southward shift in the east and uneven regional distribution.Overall,the supply capacity of rural pension services was generally good,with the township center as the gathering point and spreading out in a faceted manner,with nearby townships forming a contiguous area;however,there were strong contrasts and obvious differences in the strength of supply capacity.However,the spatial equity of rural eldercare service was poor.In 42.05%of the eld-erly population grid cells,eldercare service spatial equity was extremely low.The spatial distribution also presented a northern preference over the southern,a western preference over the eastern,and a concentration along the highway.The study explored the realization of spatial equity in the optimal allocation of rural elderly services based on paying attention to the refined needs of the rural elderly pop-ulation,a vulnerable group,to provide a reference for solving the shortcomings of basic public services in rural areas.The fair allocation of rural elderly services demands that the spatial optimization of facility layout be organically coordinated with policy,management,and post-maintenance,and all elements in the rural territorial system be fully mobilized to achieve the basic guarantee of China’s rural elderly problems.展开更多
The relationship between the supply and demand for ecosystem services(ESs)is a key issue for the rational allocation of natural resources and optimisation of sustainable development capacity.This paper investigateed t...The relationship between the supply and demand for ecosystem services(ESs)is a key issue for the rational allocation of natural resources and optimisation of sustainable development capacity.This paper investigateed the dynamic evolution features of supply and demand of four ESs in Lanzhou of China,namely,water supply,food supply,carbon fixation and soil retention services.The crosssectional data of 2005 and 2017 were used for calculating ESs value and its supply and demand through ArcGIS software,InVEST model,elastic coefficient model and coupling coordination model.Results showed that:1)from 2005 to 2017,the supply of water supply services increased,the demand of soil retention services decreased,and the supply and demand of food supply and carbon fixation services increased.The high-value areas of service supply were mainly distributed in the rocky mountain areas in the southeast and northwest with high vegetation coverage,while the high-value areas of demand were mainly distributed in the urban areas and surrounding areas with high population density.2)There were five different types of coupling relations.Water supply service was dominated by a negative coupling type D,which means that the decrease in demand for ESs has had a positive response on the supply of ESs.Negative coupling type C was the main type of food supply and carbon fixation services,which means that the increase in demand for ESs has had a negative response on the supply of ESs.All three services were supplemented by a positive coupling type A,which means that the increase in demand for ESs has had a positive response on the supply of ESs.Soil retention service generally exhibits a positive coupling type B,which means that the decrease in demand for ESs has had a negative response on the supply of ESs.3)Over the past 12 yr,the coordination degree of supply and demand of water supply,food supply and soil retention services decreased,and the coordination degree of carbon fixation service increased.Various types of ES had a low degree of coupling and coordination,showing different characteristics of temporal and spatial evolution.The areas with imbalanced ESs supply and demand were mainly distributed in urban areas dominated by construction land.The research results are valuable to the optimisation of urban and rural ecological environments and the sustainable development of territory space under the framework of ecological civilisation,including similar ecologically vulnerable areas in other developing countries.展开更多
De-farming has been a powerful measure taken by the central and local governments of China for ecological restoration in the loess hilly-gully region since 2000. In years past, aid-based de-farming pattern was far and...De-farming has been a powerful measure taken by the central and local governments of China for ecological restoration in the loess hilly-gully region since 2000. In years past, aid-based de-farming pattern was far and wide popularized in the region and terrace-based de-farming pattern demonstrated in a few small watersheds was also rather effective for ecological restoration. After summing up the features of three patterns (aid-based de-farming slope farmland more than 25°(AD25), aid-based de-farming slope farmland more than 15° (AD15) and terrace-based de-farming (TD)), this paper analyzed the regional difference of these patterns in de-farming area, ecological restoration, investment demand and so on. The results show that there are two crucial areas in the loess hilly-gully region for ecological restoration at the moment, the policies adaptation to the different areas should be constituted as soon as possible and the limited fund should be devoted to the two crucial areas.展开更多
The eco-environmental restoration has been a chief task of the western development strategies carried out by the central and local governments of China since the late 1990s, and the ecological de-farming has been rega...The eco-environmental restoration has been a chief task of the western development strategies carried out by the central and local governments of China since the late 1990s, and the ecological de-farming has been regarded as a powerful measure for the ecological restoration in the Loess Plateau and the upper reaches of the Yangtze River. "Relieving and de-farming" (RD) and "rebuilding terrace and de-farming" (RTD) are two more mature ones among various de-farming modes. Taking the loess hilly-gully region as a case, this paper summarized the basic characteristics of RD and RTD modes, calculated the sizes of de-farming slope farmland, rebuilt terraces, enlarged garden plots and restored vegetation, and compared the differences of two modes in terms of de-farming area, ecological reestablishment index, investment demand amount and benefits. The results showed that RTD mode has many advantages, including suitable investment, sufficient grain supply and great benefits, and will be the best ecological reestablishment mode in the loess hilly-gully region, and RD mode which is being carried out in this region should be replaced by RTD mode as soon as possible.展开更多
Seasonal freeze–thaw processes have led to severe soil erosion in the middle and high latitudes.The area affected by freeze–thaw erosion in China exceeds 13%of the national territory.So understanding the effect of f...Seasonal freeze–thaw processes have led to severe soil erosion in the middle and high latitudes.The area affected by freeze–thaw erosion in China exceeds 13%of the national territory.So understanding the effect of freeze–thaw on erosion process is of great significance for soil and water conservation as well as for ecological engineering.In this study,we designed simulated rainfall experiments to investigate soil erosion processes under two soil conditions,unfrozen slope(UFS)and frozen slope(FS),and three rainfall intensities of 0.6,0.9 and 1.2 mm/min.The results showed that the initial runoff time of FS occurred much earlier than that of the UFS.Under the same rainfall intensity,the runoff of FS is 1.17–1.26 times that of UFS;and the sediment yield of FS is 6.48–10.49 times that of UFS.With increasing rainfall time,rills were produced on the slope.After the appearance of the rills,the sediment yield on the FS accounts for 74%–86%of the total sediment yield.Rill erosion was the main reason for the increase in soil erosion rate on FS,and the reduction in water percolation resulting from frozen layers was one of the important factors leading to the advancement of rills on slope.A linear relationship existed between the cumulative runoff and the sediment yield of UFS and FS(R2>0.97,P<0.01).The average mean weight diameter(MWD)on the slope erosion particles was as follows:UFS0.9(73.84μm)>FS0.6(72.30μm)>UFS1.2(72.23μm)>substrate(71.23μm)>FS1.2(71.06μm)>FS0.9(70.72μm).During the early stage of the rainfall,the MWD of the FS was relatively large.However,during the middle to late rainfall,the particle composition gradually approached that of the soil substrate.Under different rainfall intensities,the mean soil erodibility(MK)of the FS was 7.22 times that of the UFS.The ratio of the mean regression coefficient C2(MC2)between FS and UFS was roughly correspondent with MK.Therefore,the parameter C2 can be used to evaluate soil erodibility after the appearance of the rills.This article explored the influence mechanism of freeze–thaw effects on loess soil erosion and provided a theoretical basis for further studies on soil erosion in the loess hilly regions.展开更多
With the continuous development of economy and changes in people’s lifestyle,rural domestic waste brought about serious harm to water,air,human health,ecological landscape and so forth.In this paper,taking Longfang T...With the continuous development of economy and changes in people’s lifestyle,rural domestic waste brought about serious harm to water,air,human health,ecological landscape and so forth.In this paper,taking Longfang Town in Loess Plateau region as example,the source,amount and harms of rural domestic waste were analyzed firstly,as well as the current situation and existing problems of treatment,and then a suitable waste disposal technology for the town was chosen,finally the reasonable treatment methods combining new countryside and non-new countryside with township was summed up,so as to realize the reduction,harmless and resource treatment of rural domestic waste.展开更多
Serious soil erosion has made the eco-environment fragile in the Loess Plateau. Based on the 10-year data observed from 1989 to 1998 in the Ziwuling Survey Station in loess hilly region, the eco-environment change and...Serious soil erosion has made the eco-environment fragile in the Loess Plateau. Based on the 10-year data observed from 1989 to 1998 in the Ziwuling Survey Station in loess hilly region, the eco-environment change and soil erosion process in reclaimed forestland were studied in this paper. The results showed that the intensity of man-made soil erosion caused by forestland reclamation was 1000 times more than that of the natural erosion. From the analysis of soil physical and mechanical properties, in the 10th year after forestland was reclaimed, the clay content and physical clay content decreased 2.74 percentage point and 3.01 percentage point respectively, the >0.25mm waterstable aggregate content decreased 31.59 percentage point, the soil bulk density increased and soil shear strength decreased, all of which were easier to cause soil erosion. The correlation analysis showed that >0.25mm waterstable aggregate content was the key factor affecting soil erosion, and the secondary factors were soil coarse grain and soil shear strength. The relation between the >0.25mm waterstable aggregate content, the soil sheer strength and the soil erosion intensity were analyzed, which showed that the first year and the seventh erosion year were the turn years of the soil erosion intensity after the forestland was reclaimed, revealed that the change of eco-environment was the main cause to accelerate soil erosion, and the worse environment caused soil erosion to be serious rapidly.展开更多
Leaf wetness provides a wide range of benefits not only to leaves,but also to ecosystems and communities.It regulates canopy eco-hydrological processes and drives spatial differences in hydrological flux.In spite of t...Leaf wetness provides a wide range of benefits not only to leaves,but also to ecosystems and communities.It regulates canopy eco-hydrological processes and drives spatial differences in hydrological flux.In spite of these functions,little remains known about the spatial distribution of leaf wetness under different soil water conditions.Leaf wetness measurements at the top(180 cm),middle(135 cm),and bottom(85 cm)of the canopy positions of rainfed jujube(Ziziphus jujuba Mill.)in the Chinese loess hilly region were obtained along with meteorological and soil water conditions during the growing seasons in 2019 and 2020.Under soil water non-deficit condition,the frequency of occurrence of leaf wetness was 5.45%higher at the top than at the middle and bottom of the canopy positions.The frequency of occurrence of leaf wetness at the top,middle and bottom of the canopy positions was over 80%at 17:00‒18:00(LST).However,the occurrence of leaf wetness at the top was earlier than those at the middle and bottom of the canopy positions.Correspondingly,leaf drying at the top was also latter than those at the middle and bottom of the canopy positions.Leaf wetness duration at the middle was similar to that at the bottom of the canopy position,but about 1.46-3.01 h less than that at the top.Under soil water deficit condition,the frequency of occurrence of leaf wetness(4.92%-45.45%)followed the order of top>middle>bottom of the canopy position.As the onset of leaf wetness was delayed,the onset of wet leaf drying was advanced and the leaf wetness duration was shortened.Leaf wetness duration at the top was linearly related(R^(2)>0.70)to those at the middle and bottom of the canopy positions under different soil water conditions.In conclusion,the hydrological processes at canopy surfaces of rainfed jujube depended on the position of leaves,thus adjusting canopy structure to redistribute hydrological process is a way to meet the water need of jujube.展开更多
Methane(CH_(4))is an important greenhouse gas second only to CO_(2)in terms of its greenhouse effect.Vegetation plays an important role in controlling soil CH_(4)fluxes,but the spatial variability of soil CH_(4)fluxes...Methane(CH_(4))is an important greenhouse gas second only to CO_(2)in terms of its greenhouse effect.Vegetation plays an important role in controlling soil CH_(4)fluxes,but the spatial variability of soil CH_(4)fluxes during vegetation restoration in Loess Hilly Region(LHR)is not fully understood.The effects of different plant community types[Medicago sativa grassland(MS);Xanthoceras sorbifolium forestland(XS);Caragana korshinskii bushland(CK);Hippophae rhamnoides shrubland(HR);and Stipa bungeana grassland(SB)]on soil CH_(4)flux in LHR were studied via the static chamber technique.The results showed that the five plant community types were sinks of soil CH_(4)in LHR,the plant community type significantly affected the soil CH_(4)flux,and the average CH_(4)uptake from high to low was in SB,HR,CK,MS,and XS.During the whole study period,the soil CH_(4)flux showed similar interannual variation.The maximum absorption of soil CH_(4)appeared in the growing season,while the minimum appeared in winter.Soil CH_(4)uptake was positively correlated with soil temperature and soil moisture.Soil temperature and moisture are important controlling factors for the temporal variability of soil CH_(4)flux.In LHR,the Stipa bungeana grassland is the more suitable plant community type for reducing soil CH_(4)emissions.In the process of vegetation restoration in LHR,the soil CH_(4)absorption potential of different plant community types should be considered,ecological benefits should be taken into account,and vegetation more suitable for mitigating the greenhouse effect should be selected.展开更多
Soil respiration(Rs)is important for transport-ing or fixing carbon dioxide from the atmosphere,and even diminutive variations can profoundly influence the carbon cycle.However,the R_(s) dynamics in a loess alpine hil...Soil respiration(Rs)is important for transport-ing or fixing carbon dioxide from the atmosphere,and even diminutive variations can profoundly influence the carbon cycle.However,the R_(s) dynamics in a loess alpine hilly region with representative sensitivity to climate change and fragile ecology remains poorly understood.This study investigated the correlation and degree of control between R_(s) and its photosynthetic and environmental factors in five subalpine forest cover types.We examined the correlations between R_(s) and variables temperature(T_(10)) and soil moisture content at 10 cm depth(W_(10)),net photosynthetic rate(P_(n))and soil properties to establish multiple models,and the variables were measured for diurnal and monthly vari-ations from September 2018 to August 2019.The results showed that soil physical factors are not the main drivers of R_(s) dynamics at the diel scale;however,the trend in the monthly variation in R_(s) was consistent with that of T_(10)and P_(n).Further,R_(s) was significantly affected by pH,providing further evidence that coniferous forest leaves contribute to soil acidification,thus reducing R_(s).Significant exponential and linear correlations were established between R_(s) and T_(10)and W_(10),respectively,and R_(s) was positively correlated with P_(n).Accordingly,we established a two-factor model and a three-factor model,and the correlation coefficients(R_(2))was improved to different degrees compared with models based only on T_(10) and W_(10).Moreover,temperature sensitivity(Q_(10))was the highest in the secondary forest and lowest in the Larix principis-rupprechtii forest.Our findings suggest that the control of R_(s) by the environment(moisture and tempera-ture)and photosynthesis,which are interactive or comple-mentary effects,may influence spatial and temporal homeo-stasis in the region and showed that the models appropriately described the dynamic variation in R_(s) and the carbon cycle in different forest covers.In addition,total phosphorus(TP)and total potassium(TK)significantly affected the dynamic changes in R_(s).In summary,interannual and seasonal variations in forest R_(s) at multiple scales and the response forces of related ecophysiological factors,especially the interactive driving effects of soil temperature,soil moisture and photo-synthesis,were clarified,thus representing an important step in predicting the impact of climate change and formulating forest carbon management policies.展开更多
[Objective] The aim was to study the climate changes characteristics in the hilly region of the loess plateau and its influence on agricultural production.[Method] Taking Yan’an City as an example,and by dint of temp...[Objective] The aim was to study the climate changes characteristics in the hilly region of the loess plateau and its influence on agricultural production.[Method] Taking Yan’an City as an example,and by dint of temperature and precipitation in nine meteorological stations from 1957 to 2007 and accumulated anomaly curve,linear regression and relevant analysis,the climate changes characteristics in 51 years in Yan’an were expounded.The climate changes in the hilly region of the loess plateau were studied and its influences on agricultural production were concluded.[Result] The characteristics of climate changes in the hilly region were as follow:high temperature in winter and warm winter trend was clearly;the temperature in spring enhanced fast and the drought disaster was increasing worse;rainy days occurred now and then in autumn.The climate changes had different levels of influences on agricultural production in Yan’an City.Because of rising temperature in winter,facility agriculture was vigorously developed and the apple range expanded;in the meantime,because of rising temperature in spring,drought was worsen and sowing in spring can not proceed;constant rain in autumn damaged the quality of date.[Conclusion] The study provided theoretical basis for the regional agricultural production and agricultural structure adjustment.展开更多
On the Loess Plateau of China, facing the vulnerable environment, local people have to try their best to guarantee the security of food, and at the same time, to control the most serious soil erosion in the world. The...On the Loess Plateau of China, facing the vulnerable environment, local people have to try their best to guarantee the security of food, and at the same time, to control the most serious soil erosion in the world. The paper introduces two typical models of ecological agriculture: ecological agriculture with commodity and agri- culture with soil and water conservation. According to the local natural condition, the model of eco-agriculture with commodity could be characterized by the structure of “agriculture-byproduct”, “agriculture-fruit” or “agri- culture-forestry-husbandry”. The development of agriculture with soil and water conservation has decreased the soil erosion rate from 12,184 ton/km2 in 1980 to 458.4 ton/km2 in 1999, while the farmers’ income has increasingly risen. Analyses on the two models’ benefits both in terms of ecological and agricultural economy show that there is a great possibility to construct or restore good eco-environment with comprehensive control in the hilly-gully area of north Shannxi. Further more, the paper points out the potential problems of foodstuff production and stockbreeding development in forming ecological agriculture and eco-environmental restoration.展开更多
As more and more farmland is converted to forestry, the need for effective decision support regarding the use of land in the fragile ecological environment of the Loess Plateau hilly-gully area. The Luoyugou watershed...As more and more farmland is converted to forestry, the need for effective decision support regarding the use of land in the fragile ecological environment of the Loess Plateau hilly-gully area. The Luoyugou watershed was chosen as the study area to calculate the single dynamic degree, integrated dynamic degree, and change indexes of land use, as well as the land-use type transition matrix. This was done by interpreting the TM and SPOT images of the Luoyugou watershed in 1986, 1995, and2004 and making statistical analysis. The results of ou statistical analysis show that the conversion of slope farm land to terrace and forest land plays a dominant role in land-use changes in the Luoyugou watershed from 1986 to2004. The land-use changes are mainly driven by popula tion growth, socio-economic development, consume spending, and investment in forest ecology.展开更多
Soil moisture is a limiting factor for vegetation restoration on the Loess Plateau, China. Micro-topography may cause heterogeneities in the distribution of soil moisture, but little is known about its effect on deep ...Soil moisture is a limiting factor for vegetation restoration on the Loess Plateau, China. Micro-topography may cause heterogeneities in the distribution of soil moisture, but little is known about its effect on deep soil moisture. Our study aims to explore the distribution and impact of soil moisture within the upper 10 m of soil for different microtopographies. Taking undisturbed slope as the control, five micro-topographies were selected. Soil moisture over a depth of 0-10 m from 2017 to 2019 was investigated, and soil particle size and soil organic matter were measured. Variance analysis and multiple comparisons were used to analyze the difference in soil moisture for different microtopographies and multiple-linear regression was used to analyze the influence of micro-topography on soil moisture. There are significant differences in soil moisture within the different layers underlying the examined micro-topographies, while the inter-annual variation in soil water storage for the selected microtopographies increase with increased rainfall. The depth of influence of micro-topographic vegetation on soil moisture exceeded 1000 cm for a gully(GU), 740 cm for a sink hole(SH), 480 cm for a scarp(SC), 360 cm for an ephemeral gully(EG) and 220 cm for a platform(PL). Micro-topography will cause the heterogeneous distribution of soil moisture in the shallower layers, which changes the vegetation distribution differences between micro-topographies. This may be the survival strategy of herbaceous vegetation in response to climate change in the Loess Plateau. For future vegetation restoration efforts, we need to pay attention to the influence of microtopography on soil moisture.展开更多
Increasing the quantity and improving the quality of cropland can alleviate the human-land contradiction and promote the sustainable development of agriculture especially in mountainous areas.With the support of the c...Increasing the quantity and improving the quality of cropland can alleviate the human-land contradiction and promote the sustainable development of agriculture especially in mountainous areas.With the support of the central government’s policies,Yan’an,Northern Shaanxi,China implemented a major land consolidation engineering project in the loess hilly-gully region from 2013 to 2018,achieving 33,333.3 ha of new cropland.However,the poor quality of some newly-constructed cropland at the initial stage hindered its efficient utilization.In order to overcome this problem,red clay and Malan loess were compounded in different volume ratios to explore the method to improve the cropland quality.The Root Zone Water Quality Model was used to simulate the effects of different soil treatments on soil water,nitrogen and maize growth.Experimental data were collected from 2018 to 2019 to calibrate and validate the model.The root mean square error(RMSE)of soil water content,nitrate nitrogen concentration,above-ground biomass,leaf area index were in the range of 11.72-14.06 mm,4.06-11.73 mg kg^(-1),835.21-1151.28 kg ha^(-1)and 0.24-0.47,respectively,while the agreement index(d)between measured and simulated values ranged from 0.70 to 0.96.It was showed that,compared with land constructed with Malan loess only(T1),the soil structure and hydraulic characteristics of land with a volume ratio of red clay and Malan loess of 2:1(T3)was better.Simulation indicated that,compared with T1,the soil water content and available water content of T3 increased by 14.4%and 19.0%,respectively,while N leaching decreased by 16.9%.The aboveground biomass and maize yield of T3 were 7.9%and 6.7%higher than that of T1,respectively.Furthermore,the water productivity and nitrogen use efficiency of T3 increased by 21.0%and 16.6%compared with that of T1.These results indicated that compounding red clay and Malan loess in an appropriate ratio was an effective method to improve soil quality.This study provides a technical idea and specific technical parameters for the construction or improvement of cropland in loess hilly-gully region,which may also provide reference for similar projects in other places.展开更多
[Objectives]To explore the impact of land use changes on physical properties of soil in loess hilly region.[Methods]The methods of field sampling and indoor analysis were adopted.Farmland in a small watershed in the m...[Objectives]To explore the impact of land use changes on physical properties of soil in loess hilly region.[Methods]The methods of field sampling and indoor analysis were adopted.Farmland in a small watershed in the middle of the Loess Plateau,grassland that had been abandoned for 7 years,grassland that had been abandoned for 30 years,jujube orchard and ditch were sampled,and the particle composition(clay,silt and sand)and moisture changes of the soil in the top 0-100 cm were studied.[Results]In the small watershed,the top 0-100 cm of the soil was composed of 14%clay,70%silt and 16%sand.The contents of clay,silt and sand in the grassland that had been abandoned for 30 years varied greatly,while varied little in the land of other use types.The soil moisture content of grassland that had been abandoned for 30 years,jujube orchard,grassland that had been abandoned for 7 years,farmland and ditch increased with the increase of depth,with means of 10.29%,11.66%,10.08%,11.43%and 11.34%,respectively.[Conclusions]This study provides a theoretical basis for the growth of crops of different land use types in the loess hilly region.展开更多
Scientific field management is an important path to realize ecological production and sustainable development of agriculture.As the main content of field management,nitrogen(N)management is the key to balance the econ...Scientific field management is an important path to realize ecological production and sustainable development of agriculture.As the main content of field management,nitrogen(N)management is the key to balance the economic and ecological benefits of agricultural production.In the loess hilly-gully region,for the fragile ecological and social system,ecologicalization of agricultural production is an important direction to promote sustainable agricultural development.However,irrational fertilization has been one of the main constraint factors,hindering the ecologicalization of local agriculture.In order to solve the problem and prove the practical significance of field management to ecologicalization of agriculture,this study aimed at evaluating the effects of different N fertilization rates and timing using Root Zone Water Quality Model(RZWQM)and then optimizing the N management.Experiments were conducted from 2018 to 2019 in Yangjuangou watershed,loess hilly-gully region,to calibrate and validate the model.The root mean square error(RMSE)of soil water content,nitrate N concentration,above-ground biomass,leaf area index ranged from 10.5-13.5 mm,2.96-3.80 mg·kg^(−1),730.3-1273.9 kg·ha^(−1)and 0.26-0.38,respectively,with the agreement index(d)between observed and simulated values ranging between 0.88 to 0.98.Simulation results showed that N leaching in semi-arid areas was also quite high due to concentrated rainfall and loose soil,which had previously been neglected.When the fertilization rate decreased by 35%(applying the chemical fertilizer at rate of 245.7 kg N ha^(−1))of typical fertilization(applying the chemical fertilizer at rate of 378.0 kg N ha^(−1)),the leaching and residual N decreased by 72.2%-75.4%and 35.6%-50.9%,respectively,while NUE increased by 41.5%-45.2%with no reduction in maize yield.Additionally,compared with applying additional N at seedling stage in one batch,applying at seedling and jointing stages in two batches further decreased N leaching and improved NUE.Thus,a 35%reduction of typical fertilization rate combined with applying additional N at seedling and jointing stages is recommended.From the perspective of N management,this study demonstrated optimizing field management can play a positive role in the ecologicalization of agriculture,and more field management measures should be explored.展开更多
[Objective]The aim was to study the influence of Qinghai-Tibet Plateau uplift on regional climate in China.[Method] Trough relevant study of Qinghai-Tibet Plateau and its surrounding movement,the tectonic movement of ...[Objective]The aim was to study the influence of Qinghai-Tibet Plateau uplift on regional climate in China.[Method] Trough relevant study of Qinghai-Tibet Plateau and its surrounding movement,the tectonic movement of the Qinghai-Tibet Plateau and its surrounding areas,especially the case of the impact caused by plateau phased uplift were studied based on paleomagnetic measurements.[Result]The increasing Qinghai-Tibet Plateau led to obvious transition from dry to cold in northwest China and it became dry quickly,which led to loess accumulation,replacement of vegetation types and human activity.Meanwhile,it was dry,and there was certain degree of climate changes in the area.[Conclusion] Qinghai-Tibet Plateau had far-reaching significance on basic climate characteristics in northwest China.展开更多
文摘A thorough analysis on its natural environment as well as social economic status of the hilly-gullied loess region is presented. A small watershed, the dominant landscape unit of the region, has been singled out for further and specific study on landscape pattern and function, its social and economic distinctions. The authors proposed several principles based on its eco-economic background study, which includes water balance and efficient use principle, co-development of grass and agro-forestry principle, location optimization principle. Integrated with detailed analysis of a small watershed, an eco-productive paradigm for the loess land's development based on a small watershed scale was worked out. It consists of circle pattern with villages at core for high efficient agriculture production, hierarchical pattern along the slope for eco-economic development, point-axis pattern for commodity production and circulation in small watersheds and core-margin pattern for exchanges among watersheds.
基金Supported by the"Twelfth Five-Year Plan"of the National Science and Technology(2011BAD31B01)~~
文摘[Objective] The aim of this study was to study the influence of plants on the soil moisture content under different fertilization.[Method] Using sainfoin,sweet clover,Astragalus adsurgens,alfalfa,ryegrass,little flower,white clover as experimental material,this study explored the effects of soil moisture on the improvement of soil quality.[Result] Results showed that the soil moisture content of different plants follows as:sainfoin 〉sweet clover 〉Astragalus adsurgens 〉alfalfa perennial ryegrass 〉small crown 〉white clover,and the average moisture content reached 24.13% which was 2.45% higher than that of control group.At planting white clover,sweet clover,under the condition of 7 kinds of crops,in the treatments without fertilizer and with organic fertilizer,soil moisture content of soil in 0-20 cm grew significantly.[Conclusion] The application of organic fertilizer and growing of plants would improve soil moisture in abandoned fields,enhance the ability of soil water supply,and improve soil fertility.
基金Under the auspices of the National Natural Science Foundation of China(No.42271222)Natural Science Foundation of Gansu Province(No.22JR5RA130,22JR5RA143)。
文摘Safeguarding the elderly population in the countryside is an inherent requirement for alleviating social conflicts in rural areas and effectively carrying out China’s Rural Revitalization.The existing spatial mismatch between rural elderly service facilities and pop-ulation distribution in China aggravates the imbalance of facility resource space,how to improve the accuracy of demand and supply results and better measuring the spatial fairness of elderly service is significant to realize the optimal allocation of rural elderly service.Based on the above,this study pays attention to the refined needs of the elderly population,and focuses on the spatial equity of the rural elderly facilities,to make up for the short boards of the basic public services in the countryside and realize the all-round rural revitalization.This study takes Huanxian County in the hilly loess area of Longdong,China as an example and explores the spatial equity of rural elderly services by using the Urban Spatial Network Analysis(UNA)to measure the accessible quantity and supply capacity of elderly services.The results found that there were 553 rural eldercare service facilities in Huanxian County,including 285 eldercare facilities and 268 medical and health facilities,and the spatial distribution is characterized by a southward shift in the east and uneven regional distribution.Overall,the supply capacity of rural pension services was generally good,with the township center as the gathering point and spreading out in a faceted manner,with nearby townships forming a contiguous area;however,there were strong contrasts and obvious differences in the strength of supply capacity.However,the spatial equity of rural eldercare service was poor.In 42.05%of the eld-erly population grid cells,eldercare service spatial equity was extremely low.The spatial distribution also presented a northern preference over the southern,a western preference over the eastern,and a concentration along the highway.The study explored the realization of spatial equity in the optimal allocation of rural elderly services based on paying attention to the refined needs of the rural elderly pop-ulation,a vulnerable group,to provide a reference for solving the shortcomings of basic public services in rural areas.The fair allocation of rural elderly services demands that the spatial optimization of facility layout be organically coordinated with policy,management,and post-maintenance,and all elements in the rural territorial system be fully mobilized to achieve the basic guarantee of China’s rural elderly problems.
基金Under the auspices of National Natural Science Foundation of China(No.41861034)。
文摘The relationship between the supply and demand for ecosystem services(ESs)is a key issue for the rational allocation of natural resources and optimisation of sustainable development capacity.This paper investigateed the dynamic evolution features of supply and demand of four ESs in Lanzhou of China,namely,water supply,food supply,carbon fixation and soil retention services.The crosssectional data of 2005 and 2017 were used for calculating ESs value and its supply and demand through ArcGIS software,InVEST model,elastic coefficient model and coupling coordination model.Results showed that:1)from 2005 to 2017,the supply of water supply services increased,the demand of soil retention services decreased,and the supply and demand of food supply and carbon fixation services increased.The high-value areas of service supply were mainly distributed in the rocky mountain areas in the southeast and northwest with high vegetation coverage,while the high-value areas of demand were mainly distributed in the urban areas and surrounding areas with high population density.2)There were five different types of coupling relations.Water supply service was dominated by a negative coupling type D,which means that the decrease in demand for ESs has had a positive response on the supply of ESs.Negative coupling type C was the main type of food supply and carbon fixation services,which means that the increase in demand for ESs has had a negative response on the supply of ESs.All three services were supplemented by a positive coupling type A,which means that the increase in demand for ESs has had a positive response on the supply of ESs.Soil retention service generally exhibits a positive coupling type B,which means that the decrease in demand for ESs has had a negative response on the supply of ESs.3)Over the past 12 yr,the coordination degree of supply and demand of water supply,food supply and soil retention services decreased,and the coordination degree of carbon fixation service increased.Various types of ES had a low degree of coupling and coordination,showing different characteristics of temporal and spatial evolution.The areas with imbalanced ESs supply and demand were mainly distributed in urban areas dominated by construction land.The research results are valuable to the optimisation of urban and rural ecological environments and the sustainable development of territory space under the framework of ecological civilisation,including similar ecologically vulnerable areas in other developing countries.
基金support from National Natural Science Foundation of China(Grant No.40371051)Institute of Geographic Sciences and Natural Resources Research,CAS(Grant No.CXI0G-B05-03).
文摘De-farming has been a powerful measure taken by the central and local governments of China for ecological restoration in the loess hilly-gully region since 2000. In years past, aid-based de-farming pattern was far and wide popularized in the region and terrace-based de-farming pattern demonstrated in a few small watersheds was also rather effective for ecological restoration. After summing up the features of three patterns (aid-based de-farming slope farmland more than 25°(AD25), aid-based de-farming slope farmland more than 15° (AD15) and terrace-based de-farming (TD)), this paper analyzed the regional difference of these patterns in de-farming area, ecological restoration, investment demand and so on. The results show that there are two crucial areas in the loess hilly-gully region for ecological restoration at the moment, the policies adaptation to the different areas should be constituted as soon as possible and the limited fund should be devoted to the two crucial areas.
基金National Natural Science Foundation of China No.40371051+1 种基金 Knowledge Innovation Project of Chinese Academy of Sciences No.KZCX1-6-2-6
文摘The eco-environmental restoration has been a chief task of the western development strategies carried out by the central and local governments of China since the late 1990s, and the ecological de-farming has been regarded as a powerful measure for the ecological restoration in the Loess Plateau and the upper reaches of the Yangtze River. "Relieving and de-farming" (RD) and "rebuilding terrace and de-farming" (RTD) are two more mature ones among various de-farming modes. Taking the loess hilly-gully region as a case, this paper summarized the basic characteristics of RD and RTD modes, calculated the sizes of de-farming slope farmland, rebuilt terraces, enlarged garden plots and restored vegetation, and compared the differences of two modes in terms of de-farming area, ecological reestablishment index, investment demand amount and benefits. The results showed that RTD mode has many advantages, including suitable investment, sufficient grain supply and great benefits, and will be the best ecological reestablishment mode in the loess hilly-gully region, and RD mode which is being carried out in this region should be replaced by RTD mode as soon as possible.
基金the National Key Research and Development Program of China(2017YFC0403605)the National Natural Science Foundation of China(413517033)+1 种基金the State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin,China Institute of Water Resources and Hydropower Research(SKL2018CG04)the Shaanxi Province Innovation Talent Promotion Plan Project Technology Innovation Team(2018TD-037)。
文摘Seasonal freeze–thaw processes have led to severe soil erosion in the middle and high latitudes.The area affected by freeze–thaw erosion in China exceeds 13%of the national territory.So understanding the effect of freeze–thaw on erosion process is of great significance for soil and water conservation as well as for ecological engineering.In this study,we designed simulated rainfall experiments to investigate soil erosion processes under two soil conditions,unfrozen slope(UFS)and frozen slope(FS),and three rainfall intensities of 0.6,0.9 and 1.2 mm/min.The results showed that the initial runoff time of FS occurred much earlier than that of the UFS.Under the same rainfall intensity,the runoff of FS is 1.17–1.26 times that of UFS;and the sediment yield of FS is 6.48–10.49 times that of UFS.With increasing rainfall time,rills were produced on the slope.After the appearance of the rills,the sediment yield on the FS accounts for 74%–86%of the total sediment yield.Rill erosion was the main reason for the increase in soil erosion rate on FS,and the reduction in water percolation resulting from frozen layers was one of the important factors leading to the advancement of rills on slope.A linear relationship existed between the cumulative runoff and the sediment yield of UFS and FS(R2>0.97,P<0.01).The average mean weight diameter(MWD)on the slope erosion particles was as follows:UFS0.9(73.84μm)>FS0.6(72.30μm)>UFS1.2(72.23μm)>substrate(71.23μm)>FS1.2(71.06μm)>FS0.9(70.72μm).During the early stage of the rainfall,the MWD of the FS was relatively large.However,during the middle to late rainfall,the particle composition gradually approached that of the soil substrate.Under different rainfall intensities,the mean soil erodibility(MK)of the FS was 7.22 times that of the UFS.The ratio of the mean regression coefficient C2(MC2)between FS and UFS was roughly correspondent with MK.Therefore,the parameter C2 can be used to evaluate soil erodibility after the appearance of the rills.This article explored the influence mechanism of freeze–thaw effects on loess soil erosion and provided a theoretical basis for further studies on soil erosion in the loess hilly regions.
文摘With the continuous development of economy and changes in people’s lifestyle,rural domestic waste brought about serious harm to water,air,human health,ecological landscape and so forth.In this paper,taking Longfang Town in Loess Plateau region as example,the source,amount and harms of rural domestic waste were analyzed firstly,as well as the current situation and existing problems of treatment,and then a suitable waste disposal technology for the town was chosen,finally the reasonable treatment methods combining new countryside and non-new countryside with township was summed up,so as to realize the reduction,harmless and resource treatment of rural domestic waste.
文摘Serious soil erosion has made the eco-environment fragile in the Loess Plateau. Based on the 10-year data observed from 1989 to 1998 in the Ziwuling Survey Station in loess hilly region, the eco-environment change and soil erosion process in reclaimed forestland were studied in this paper. The results showed that the intensity of man-made soil erosion caused by forestland reclamation was 1000 times more than that of the natural erosion. From the analysis of soil physical and mechanical properties, in the 10th year after forestland was reclaimed, the clay content and physical clay content decreased 2.74 percentage point and 3.01 percentage point respectively, the >0.25mm waterstable aggregate content decreased 31.59 percentage point, the soil bulk density increased and soil shear strength decreased, all of which were easier to cause soil erosion. The correlation analysis showed that >0.25mm waterstable aggregate content was the key factor affecting soil erosion, and the secondary factors were soil coarse grain and soil shear strength. The relation between the >0.25mm waterstable aggregate content, the soil sheer strength and the soil erosion intensity were analyzed, which showed that the first year and the seventh erosion year were the turn years of the soil erosion intensity after the forestland was reclaimed, revealed that the change of eco-environment was the main cause to accelerate soil erosion, and the worse environment caused soil erosion to be serious rapidly.
基金funded by the National Natural Science Foundation of China(32060301).
文摘Leaf wetness provides a wide range of benefits not only to leaves,but also to ecosystems and communities.It regulates canopy eco-hydrological processes and drives spatial differences in hydrological flux.In spite of these functions,little remains known about the spatial distribution of leaf wetness under different soil water conditions.Leaf wetness measurements at the top(180 cm),middle(135 cm),and bottom(85 cm)of the canopy positions of rainfed jujube(Ziziphus jujuba Mill.)in the Chinese loess hilly region were obtained along with meteorological and soil water conditions during the growing seasons in 2019 and 2020.Under soil water non-deficit condition,the frequency of occurrence of leaf wetness was 5.45%higher at the top than at the middle and bottom of the canopy positions.The frequency of occurrence of leaf wetness at the top,middle and bottom of the canopy positions was over 80%at 17:00‒18:00(LST).However,the occurrence of leaf wetness at the top was earlier than those at the middle and bottom of the canopy positions.Correspondingly,leaf drying at the top was also latter than those at the middle and bottom of the canopy positions.Leaf wetness duration at the middle was similar to that at the bottom of the canopy position,but about 1.46-3.01 h less than that at the top.Under soil water deficit condition,the frequency of occurrence of leaf wetness(4.92%-45.45%)followed the order of top>middle>bottom of the canopy position.As the onset of leaf wetness was delayed,the onset of wet leaf drying was advanced and the leaf wetness duration was shortened.Leaf wetness duration at the top was linearly related(R^(2)>0.70)to those at the middle and bottom of the canopy positions under different soil water conditions.In conclusion,the hydrological processes at canopy surfaces of rainfed jujube depended on the position of leaves,thus adjusting canopy structure to redistribute hydrological process is a way to meet the water need of jujube.
基金financially supported by the Gansu Province Key Research and Development Program (Grant No. 20YF8NA135)the Gansu Province Financial Special Project (Grant No. GSCZZ 20160909)the Industrial Support Program Project (Grant No. 2021CYZC15, No.2022CYZC-41)
文摘Methane(CH_(4))is an important greenhouse gas second only to CO_(2)in terms of its greenhouse effect.Vegetation plays an important role in controlling soil CH_(4)fluxes,but the spatial variability of soil CH_(4)fluxes during vegetation restoration in Loess Hilly Region(LHR)is not fully understood.The effects of different plant community types[Medicago sativa grassland(MS);Xanthoceras sorbifolium forestland(XS);Caragana korshinskii bushland(CK);Hippophae rhamnoides shrubland(HR);and Stipa bungeana grassland(SB)]on soil CH_(4)flux in LHR were studied via the static chamber technique.The results showed that the five plant community types were sinks of soil CH_(4)in LHR,the plant community type significantly affected the soil CH_(4)flux,and the average CH_(4)uptake from high to low was in SB,HR,CK,MS,and XS.During the whole study period,the soil CH_(4)flux showed similar interannual variation.The maximum absorption of soil CH_(4)appeared in the growing season,while the minimum appeared in winter.Soil CH_(4)uptake was positively correlated with soil temperature and soil moisture.Soil temperature and moisture are important controlling factors for the temporal variability of soil CH_(4)flux.In LHR,the Stipa bungeana grassland is the more suitable plant community type for reducing soil CH_(4)emissions.In the process of vegetation restoration in LHR,the soil CH_(4)absorption potential of different plant community types should be considered,ecological benefits should be taken into account,and vegetation more suitable for mitigating the greenhouse effect should be selected.
基金This work was supported financially by the National Key Research and Development Plan Projects of China(2017YFC0504604).
文摘Soil respiration(Rs)is important for transport-ing or fixing carbon dioxide from the atmosphere,and even diminutive variations can profoundly influence the carbon cycle.However,the R_(s) dynamics in a loess alpine hilly region with representative sensitivity to climate change and fragile ecology remains poorly understood.This study investigated the correlation and degree of control between R_(s) and its photosynthetic and environmental factors in five subalpine forest cover types.We examined the correlations between R_(s) and variables temperature(T_(10)) and soil moisture content at 10 cm depth(W_(10)),net photosynthetic rate(P_(n))and soil properties to establish multiple models,and the variables were measured for diurnal and monthly vari-ations from September 2018 to August 2019.The results showed that soil physical factors are not the main drivers of R_(s) dynamics at the diel scale;however,the trend in the monthly variation in R_(s) was consistent with that of T_(10)and P_(n).Further,R_(s) was significantly affected by pH,providing further evidence that coniferous forest leaves contribute to soil acidification,thus reducing R_(s).Significant exponential and linear correlations were established between R_(s) and T_(10)and W_(10),respectively,and R_(s) was positively correlated with P_(n).Accordingly,we established a two-factor model and a three-factor model,and the correlation coefficients(R_(2))was improved to different degrees compared with models based only on T_(10) and W_(10).Moreover,temperature sensitivity(Q_(10))was the highest in the secondary forest and lowest in the Larix principis-rupprechtii forest.Our findings suggest that the control of R_(s) by the environment(moisture and tempera-ture)and photosynthesis,which are interactive or comple-mentary effects,may influence spatial and temporal homeo-stasis in the region and showed that the models appropriately described the dynamic variation in R_(s) and the carbon cycle in different forest covers.In addition,total phosphorus(TP)and total potassium(TK)significantly affected the dynamic changes in R_(s).In summary,interannual and seasonal variations in forest R_(s) at multiple scales and the response forces of related ecophysiological factors,especially the interactive driving effects of soil temperature,soil moisture and photo-synthesis,were clarified,thus representing an important step in predicting the impact of climate change and formulating forest carbon management policies.
文摘[Objective] The aim was to study the climate changes characteristics in the hilly region of the loess plateau and its influence on agricultural production.[Method] Taking Yan’an City as an example,and by dint of temperature and precipitation in nine meteorological stations from 1957 to 2007 and accumulated anomaly curve,linear regression and relevant analysis,the climate changes characteristics in 51 years in Yan’an were expounded.The climate changes in the hilly region of the loess plateau were studied and its influences on agricultural production were concluded.[Result] The characteristics of climate changes in the hilly region were as follow:high temperature in winter and warm winter trend was clearly;the temperature in spring enhanced fast and the drought disaster was increasing worse;rainy days occurred now and then in autumn.The climate changes had different levels of influences on agricultural production in Yan’an City.Because of rising temperature in winter,facility agriculture was vigorously developed and the apple range expanded;in the meantime,because of rising temperature in spring,drought was worsen and sowing in spring can not proceed;constant rain in autumn damaged the quality of date.[Conclusion] The study provided theoretical basis for the regional agricultural production and agricultural structure adjustment.
文摘On the Loess Plateau of China, facing the vulnerable environment, local people have to try their best to guarantee the security of food, and at the same time, to control the most serious soil erosion in the world. The paper introduces two typical models of ecological agriculture: ecological agriculture with commodity and agri- culture with soil and water conservation. According to the local natural condition, the model of eco-agriculture with commodity could be characterized by the structure of “agriculture-byproduct”, “agriculture-fruit” or “agri- culture-forestry-husbandry”. The development of agriculture with soil and water conservation has decreased the soil erosion rate from 12,184 ton/km2 in 1980 to 458.4 ton/km2 in 1999, while the farmers’ income has increasingly risen. Analyses on the two models’ benefits both in terms of ecological and agricultural economy show that there is a great possibility to construct or restore good eco-environment with comprehensive control in the hilly-gully area of north Shannxi. Further more, the paper points out the potential problems of foodstuff production and stockbreeding development in forming ecological agriculture and eco-environmental restoration.
基金supported by the National Basic Research Program of China (2007CB407207)National Natural Science Foundation of China (30800888)
文摘As more and more farmland is converted to forestry, the need for effective decision support regarding the use of land in the fragile ecological environment of the Loess Plateau hilly-gully area. The Luoyugou watershed was chosen as the study area to calculate the single dynamic degree, integrated dynamic degree, and change indexes of land use, as well as the land-use type transition matrix. This was done by interpreting the TM and SPOT images of the Luoyugou watershed in 1986, 1995, and2004 and making statistical analysis. The results of ou statistical analysis show that the conversion of slope farm land to terrace and forest land plays a dominant role in land-use changes in the Luoyugou watershed from 1986 to2004. The land-use changes are mainly driven by popula tion growth, socio-economic development, consume spending, and investment in forest ecology.
基金financially supported by the 13th Five-Year National Key Research and Development Project (No.2016YFC0501705) funded by the Ministry of Science and Technology (MOST),P.R.China。
文摘Soil moisture is a limiting factor for vegetation restoration on the Loess Plateau, China. Micro-topography may cause heterogeneities in the distribution of soil moisture, but little is known about its effect on deep soil moisture. Our study aims to explore the distribution and impact of soil moisture within the upper 10 m of soil for different microtopographies. Taking undisturbed slope as the control, five micro-topographies were selected. Soil moisture over a depth of 0-10 m from 2017 to 2019 was investigated, and soil particle size and soil organic matter were measured. Variance analysis and multiple comparisons were used to analyze the difference in soil moisture for different microtopographies and multiple-linear regression was used to analyze the influence of micro-topography on soil moisture. There are significant differences in soil moisture within the different layers underlying the examined micro-topographies, while the inter-annual variation in soil water storage for the selected microtopographies increase with increased rainfall. The depth of influence of micro-topographic vegetation on soil moisture exceeded 1000 cm for a gully(GU), 740 cm for a sink hole(SH), 480 cm for a scarp(SC), 360 cm for an ephemeral gully(EG) and 220 cm for a platform(PL). Micro-topography will cause the heterogeneous distribution of soil moisture in the shallower layers, which changes the vegetation distribution differences between micro-topographies. This may be the survival strategy of herbaceous vegetation in response to climate change in the Loess Plateau. For future vegetation restoration efforts, we need to pay attention to the influence of microtopography on soil moisture.
基金supported by the National Natural Science Foundation of China(Grant No.41931293)the National Key Research and Development Program of China(Grant No.2017YFC0504701)。
文摘Increasing the quantity and improving the quality of cropland can alleviate the human-land contradiction and promote the sustainable development of agriculture especially in mountainous areas.With the support of the central government’s policies,Yan’an,Northern Shaanxi,China implemented a major land consolidation engineering project in the loess hilly-gully region from 2013 to 2018,achieving 33,333.3 ha of new cropland.However,the poor quality of some newly-constructed cropland at the initial stage hindered its efficient utilization.In order to overcome this problem,red clay and Malan loess were compounded in different volume ratios to explore the method to improve the cropland quality.The Root Zone Water Quality Model was used to simulate the effects of different soil treatments on soil water,nitrogen and maize growth.Experimental data were collected from 2018 to 2019 to calibrate and validate the model.The root mean square error(RMSE)of soil water content,nitrate nitrogen concentration,above-ground biomass,leaf area index were in the range of 11.72-14.06 mm,4.06-11.73 mg kg^(-1),835.21-1151.28 kg ha^(-1)and 0.24-0.47,respectively,while the agreement index(d)between measured and simulated values ranged from 0.70 to 0.96.It was showed that,compared with land constructed with Malan loess only(T1),the soil structure and hydraulic characteristics of land with a volume ratio of red clay and Malan loess of 2:1(T3)was better.Simulation indicated that,compared with T1,the soil water content and available water content of T3 increased by 14.4%and 19.0%,respectively,while N leaching decreased by 16.9%.The aboveground biomass and maize yield of T3 were 7.9%and 6.7%higher than that of T1,respectively.Furthermore,the water productivity and nitrogen use efficiency of T3 increased by 21.0%and 16.6%compared with that of T1.These results indicated that compounding red clay and Malan loess in an appropriate ratio was an effective method to improve soil quality.This study provides a technical idea and specific technical parameters for the construction or improvement of cropland in loess hilly-gully region,which may also provide reference for similar projects in other places.
基金Fund of Shaanxi Provincial Land Engineering Construction Group(DJNY-2021-15).
文摘[Objectives]To explore the impact of land use changes on physical properties of soil in loess hilly region.[Methods]The methods of field sampling and indoor analysis were adopted.Farmland in a small watershed in the middle of the Loess Plateau,grassland that had been abandoned for 7 years,grassland that had been abandoned for 30 years,jujube orchard and ditch were sampled,and the particle composition(clay,silt and sand)and moisture changes of the soil in the top 0-100 cm were studied.[Results]In the small watershed,the top 0-100 cm of the soil was composed of 14%clay,70%silt and 16%sand.The contents of clay,silt and sand in the grassland that had been abandoned for 30 years varied greatly,while varied little in the land of other use types.The soil moisture content of grassland that had been abandoned for 30 years,jujube orchard,grassland that had been abandoned for 7 years,farmland and ditch increased with the increase of depth,with means of 10.29%,11.66%,10.08%,11.43%and 11.34%,respectively.[Conclusions]This study provides a theoretical basis for the growth of crops of different land use types in the loess hilly region.
基金National Natural Science Foundation of China,No.41931293The National Key Research and Development Program of China,No.2017YFC0504701。
文摘Scientific field management is an important path to realize ecological production and sustainable development of agriculture.As the main content of field management,nitrogen(N)management is the key to balance the economic and ecological benefits of agricultural production.In the loess hilly-gully region,for the fragile ecological and social system,ecologicalization of agricultural production is an important direction to promote sustainable agricultural development.However,irrational fertilization has been one of the main constraint factors,hindering the ecologicalization of local agriculture.In order to solve the problem and prove the practical significance of field management to ecologicalization of agriculture,this study aimed at evaluating the effects of different N fertilization rates and timing using Root Zone Water Quality Model(RZWQM)and then optimizing the N management.Experiments were conducted from 2018 to 2019 in Yangjuangou watershed,loess hilly-gully region,to calibrate and validate the model.The root mean square error(RMSE)of soil water content,nitrate N concentration,above-ground biomass,leaf area index ranged from 10.5-13.5 mm,2.96-3.80 mg·kg^(−1),730.3-1273.9 kg·ha^(−1)and 0.26-0.38,respectively,with the agreement index(d)between observed and simulated values ranging between 0.88 to 0.98.Simulation results showed that N leaching in semi-arid areas was also quite high due to concentrated rainfall and loose soil,which had previously been neglected.When the fertilization rate decreased by 35%(applying the chemical fertilizer at rate of 245.7 kg N ha^(−1))of typical fertilization(applying the chemical fertilizer at rate of 378.0 kg N ha^(−1)),the leaching and residual N decreased by 72.2%-75.4%and 35.6%-50.9%,respectively,while NUE increased by 41.5%-45.2%with no reduction in maize yield.Additionally,compared with applying additional N at seedling stage in one batch,applying at seedling and jointing stages in two batches further decreased N leaching and improved NUE.Thus,a 35%reduction of typical fertilization rate combined with applying additional N at seedling and jointing stages is recommended.From the perspective of N management,this study demonstrated optimizing field management can play a positive role in the ecologicalization of agriculture,and more field management measures should be explored.
文摘[Objective]The aim was to study the influence of Qinghai-Tibet Plateau uplift on regional climate in China.[Method] Trough relevant study of Qinghai-Tibet Plateau and its surrounding movement,the tectonic movement of the Qinghai-Tibet Plateau and its surrounding areas,especially the case of the impact caused by plateau phased uplift were studied based on paleomagnetic measurements.[Result]The increasing Qinghai-Tibet Plateau led to obvious transition from dry to cold in northwest China and it became dry quickly,which led to loess accumulation,replacement of vegetation types and human activity.Meanwhile,it was dry,and there was certain degree of climate changes in the area.[Conclusion] Qinghai-Tibet Plateau had far-reaching significance on basic climate characteristics in northwest China.