期刊文献+
共找到3,914篇文章
< 1 2 196 >
每页显示 20 50 100
Influence of the roots of mixed-planting species on the shear strength of saline loess soil 被引量:10
1
作者 LIU Ya-bin HU Xia-song +2 位作者 YU Dong-mei ZHU Hai-li LI Guo-rong 《Journal of Mountain Science》 SCIE CSCD 2021年第3期806-818,共13页
In order to improve our knowledge of the mechanical effect of the roots of mixed-plantings on soil reinforcement and slope protection,the influence of roots of a mixed-planting with four herb species(Medicago sativa L... In order to improve our knowledge of the mechanical effect of the roots of mixed-plantings on soil reinforcement and slope protection,the influence of roots of a mixed-planting with four herb species(Medicago sativa L.,Elymus nutans Griseb.,Puccinellia distanx(L.),and Poa pratensis L.)and one shrub species(Caragana korshinskii Kom.)were investigated on the shear strength characteristics of saline loess soil.The root distribution characteristics were assessed via a survey when the plants grew for one year.The effects of the root biomass density,the root mass ratio(RMR)of the fine roots to the coarse roots,the moisture content,and the salt content on the shear strength index of the rooted soil were analyzed via a triaxial compression test,and the mechanism of these effects was discussed.The results indicate that the biomass density decreased linearly with increasing depth.The RMR initially decreased with depth and then increased,exhibiting in a quadratic relationship.The cohesion of the rooted soil increased linearly as the biomass density increased.The cohesion of the rooted soil initially increased with increasing RMR and salt content,and then it decreased.The turning point of the cohesion occurred when the RMR was 0.6 and the salt content was 1.18%.The internal friction angle of the rooted soil initially increased with biomass density and then decreased,and the turning point of the internal friction angle occurred when the biomass density was 0.015 g/cm3.The relationships between the internal friction angle of the rooted soil and the RMR and salt content were exponential incremental and linear subtractive relationship,respectively.Both the cohesion and the internal friction angle of the rooted soil linearly decreased with increasing moisture content. 展开更多
关键词 Xining Basin Herb species Shrub species Rooted soil Saline loess soil soil reinforcement Shear strength index
下载PDF
Solute transport characteristics of a deep soil profile in the Loess Plateau,China 被引量:3
2
作者 WANG Jiao SHAO Ming'an 《Journal of Arid Land》 SCIE CSCD 2018年第4期628-637,共10页
Understanding solute transport behaviors of deep soil profile in the Loess Plateau is helpful for ecological construction and agricultural production improvement. In this study, solute transport processes of a deep so... Understanding solute transport behaviors of deep soil profile in the Loess Plateau is helpful for ecological construction and agricultural production improvement. In this study, solute transport processes of a deep soil profile were measured by a conservative tracer experiment using 25 undisturbed soil cores (20 cm long and 7 cm diameter for each) continuously sampled from the surface downward to the depth of 500 cm in the Loess Plateau of China. The solute transport breakthrough curves (BTCs) were analyzed in terms of the convection-dispersion equation (CDE) and the mobile-immobile model (MIM). Average pore-water velocity and dispersion coefficient (or effective dispersion coefficient) were calculated using the CDE and MIM. Basic soil properties and water infiltration parameters were also determined to explore their influence on the solute transport parameters. Both pore-water velocity and dispersion coefficient (or effective dispersion coefficient) generally decreased with increasing depth, and the dispersivity fluctuated along the soil profile. There was a good linear correlation between log-transformed pore-water velocity and dispersion coefficient, with a slope of about 1.0 and an average dispersivity of 0.25 for the entire soil profile. Generally speaking, the soil was more homogeneous along the soil profile. Our results also show that hydrodynamic dispersion is the dominant mechanism of solute transport of loess soils in the study area. 展开更多
关键词 solute transport loess soil pore-water velocity dispersion coefficient hydraulic conductivity loess Plateau
下载PDF
Soil Insect Diversity and Abundance Following Different Fertilizer Treatments on the Loess Plateau of China 被引量:2
3
作者 LIN Ying-hua LU Ping +1 位作者 YANG Xue-yun ZHANG Fu-dao 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2013年第9期1644-1651,共8页
The presence of abundant and diverse communities of macro-arthropods is considered an indicator of sustainability in agroecosystems. This study was designed to investigate the effects of different fertilizer treatment... The presence of abundant and diverse communities of macro-arthropods is considered an indicator of sustainability in agroecosystems. This study was designed to investigate the effects of different fertilizer treatments on abundance and diversity of insects of arable loess soil on the Loess Plateau of China. These regimes included a control with no fertilizer addition or manure, treatments with application of mineral fertilizers (N, NK, NP, PK, NPK), treatments with NPK in combination with organic materials such as wheat straw or maize stalk, treatments with two rates of organic manure application; and different crop rotations (Rot. 1: winter wheat summer maize; Rot.2: winter wheat summer maize soybean intercropping; and Rot.3: winter wheat or rapeseed summer maize soybean intercropping). Soil macro-arthropods were collected from the plough layer (0-20 cm) and sorted by hand after each harvest in June and October 2001 and 2002. A total of 3 132 individuals were collected, from 7 orders and 55 families, dominated by Formicidae (61.72%) and Staphylinidae (14.24%). The results showed that individuals and groups were significantly influenced by sampling dates, while groups were significantly influenced by the fertilization treatments. Soil insect biodiversity, as determined by the Shannon index, was significantly influenced by fertilization and sampling dates. The abundance of soil insects was positively and significantly correlated with soil moisture content in October 2002. Nitrogen, phosphorus and potassium fertilizers and incorporation of organic materials were favorable factors for abundance and diversity in arable loess soil. 展开更多
关键词 long-term fertilization soil moisture soil insect loess soil
下载PDF
An Indicator System for Assessing Soil Erosion in the Loess Plateau Gully Regions:A Case Study in the Wangdonggou Watershed,China 被引量:8
4
作者 NIShao-Xiang MAGuo-Bin WEIYu-Chun JIANGHai-Fu 《Pedosphere》 SCIE CAS CSCD 2004年第1期37-44,共8页
The Wangdonggou Watershed on the Loess Plateau in China was selected as the study area to develop a model for soil erosion assessments. Using the data collected at 20 sampling sites all tentatively selected indicators... The Wangdonggou Watershed on the Loess Plateau in China was selected as the study area to develop a model for soil erosion assessments. Using the data collected at 20 sampling sites all tentatively selected indicators were assessed against their corresponding erosion intensity through a correlation analysis. Eight highly correlated indicators were then chosen for the soil erosion assessment. In addition, threshold limits to delineate the class size for these indicators and weights to rank them were determined. Next, a grading model incorporating the selected indicators class rating and their associated weights was developed and verified by an on site evaluation of the soil erosion intensity in the study area. Results of the verification showed that the overall accuracy of the indicator system for assessing soil erosion in the Loess Plateau gully regions could reach 85%. 展开更多
关键词 黄土高原 土壤侵蚀 取样 指示剂 化学分析
下载PDF
Evapotranspiration and Soil Moisture Balance for Vegetative Restoration in a Gully Catchment on the Loess Plateau, China 被引量:15
5
作者 HUANG Yi-Long CHEN Li-Ding +2 位作者 FU Bo-Jie ZHANG Li-Ping WANG Yan-Lin 《Pedosphere》 SCIE CAS CSCD 2005年第4期509-517,共9页
Evapotranspiration, soil moisture balance and the dynamics in a gully catchment of the Loess Plateau in China were determined with 6 land use treatments including natural grassland, shrubs (Caragana microphylla), two ... Evapotranspiration, soil moisture balance and the dynamics in a gully catchment of the Loess Plateau in China were determined with 6 land use treatments including natural grassland, shrubs (Caragana microphylla), two woodlands (Prunus armeniaca var. ansu and Pmus tabulaeformis), cultivated fallow, and farmland (Triticum aestivum L.) in order to obtain a better understanding of soil moisture balance principles and to improve vegetation restoration efficiency for ecological rebuilding on the plateau. Average runoff from cultivated fallow was very high, reaching 10.3% of the seasonal rainfall. Evapotranspiration under T. aestivum was not significantly different from natural grasslands. Compared with natural grass, evapotranspiration was significantly greater (P < 0.05) in 2002 and there was an increase in soil moisture depleted in the 1-3 m soil under P. armeniaca, P. tabulaeformis and C. microphylla. During the two years of the study the average soil moisture (0-100 cm soil profile) of T. aestivum was generally the highest, with P. armeniaca, P. tabulaeformis and C. microphylla usually the lowest. Thus, according to the soil moisture balance principle for this area the planned reforestation project was not ecologically reasonable. Reducing human disturbance and restoration with grass could be more effective. 展开更多
关键词 土壤湿度 土壤水分蒸发蒸腾损失总量 透水性 水分类型
下载PDF
Effect of Vegetation Changes on Soil Erosion on the Loess Plateau 被引量:94
6
作者 ZHENG Fen-Li 《Pedosphere》 SCIE CAS CSCD 2006年第4期420-427,共8页
Vegetation is one of the key factors affecting soil erosion on the Loess Plateau. The effects of vegetation destruction and vegetation restoration on soil erosion were quantified using data from long-term field runoff... Vegetation is one of the key factors affecting soil erosion on the Loess Plateau. The effects of vegetation destruction and vegetation restoration on soil erosion were quantified using data from long-term field runoff plots established on the eastern slope of the Ziwuling secondary forest region, China and a field survey. The results showed that before the secondary vegetation restoration period (before about 1866-1872), soil erosion in the Ziwuling region of the Loess Plateau was similar to the current erosion conditions in neighboring regions, where the soil erosion rate now is 8000 to 10000 t km-2 year-1. After the secondary vegetation restoration, soil erosion was very low; influences of rainfall and slope gradient on soil erosion were small; the vegetation effect on soil erosion was predominant; shallow gully and gully erosion ceased; and sediment deposition occurred in shallow gully and gully channels. In modern times when human activities destroyed secondary forests, soil erosion increased markedly, and erosion rates in the deforested lands reached 10000 to 24000 t km-2 year-1, which was 797 to 1682 times greater than those in the forested land prior to deforestation. Rainfall intensity and landform greatly affected the soil erosion process after deforestation. These results showed that accelerated erosion caused by vegetation destruction played a key role in soil degradation and eco-environmental deterioration in deforested regions. 展开更多
关键词 森林采伐 黄土高原 生态环境 水土流失 植被
下载PDF
Soil erosion and soil properties in reclaimed forestland of loess hilly region 被引量:3
7
作者 ZHAXiaochun TANGKeli 《Journal of Geographical Sciences》 SCIE CSCD 2003年第3期373-378,共6页
Based on data observed from 1989 to 1998 in the Ziwuling survey station, changes of soil erosion and soil physico-mechanical properties were studied after forestland reclamation. When the man-induced fac... Based on data observed from 1989 to 1998 in the Ziwuling survey station, changes of soil erosion and soil physico-mechanical properties were studied after forestland reclamation. When the man-induced factors changed the eco-environment by reclaiming forestlands, the intensity of man-made soil erosion in reclaimed lands was 1,000 times more than that of natural erosion in forestlands. From the analysis of soil physical and mechanical properties, the clay content and physical clay content decreased 2.74% and 3.01% respectively, and the >0.25 mm water stable aggregate content decreased 58.7%, the soil unit weight increased and the soil shear strength decreased, all of which were easier to cause soil erosion. The results of the correlation analysis showed that the >0.25 mm water stable aggregate content was the greatest influencing factor on soil erosion, the partial correlated coefficient was 0.9728, and then were soil coarse grain and soil shear strength, the partial correlated coefficients being 0.8879 and 0.6020 respectively. The relationships between the >0.25 mm water stable aggregate content, the soil sheer strength and the soil erosion intensity were analyzed, which showed that the first and seventh years were the turning years of the soil erosion intensity after the forestland reclamation. The degenerative eroded soil and eco-environment formed the peculiar erosion environment, which aggravated the soil erosion rapidly. 展开更多
关键词 loess reclaimed forestland soil erosion soil properties SHAANXI
下载PDF
Fractions and Bioavailability of Soil Inorganic Phosphorus in the Loess Plateau of China under Different Vegetations 被引量:6
8
作者 WEI Xiaorong SHAO Mingan +2 位作者 SHAO Hongbo GAO Jianlun XU Gang 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2011年第1期263-270,共8页
Plants play an important role in soil phosphorus nutrition. However, the effect of plants on phosphorus nutrition in soils of the Loess Plateau of China is not well understood. This study was conducted to reveal the r... Plants play an important role in soil phosphorus nutrition. However, the effect of plants on phosphorus nutrition in soils of the Loess Plateau of China is not well understood. This study was conducted to reveal the relationships between plants and phosphorus' fractions and availability in the Loess Plateau of China. Twenty-two plant communities were surveyed and soil samples under different plant canopies were collected for the determination of soil properties and inorganic phosphorus fractionation. The results showed that Leguminosae and Lilaceae reduced pH and increased organic matter, cation exchange capacity, total and Olsen phosphorus in soils under their canopies, while Labiatae and Rosaceae increased pH and decreased organic matter, cation exchange capacity, total and Olsen phosphorus in soils under their canopies. The contents of Ca2P, CasP, AI-P and Fe-P were highly related with soil Oisen phosphorus. They were all higher in soils under Leguminosae and Lilaceae and lower in softs under Labiatae and Rosaceae. The results of this study indicate that Leguminosae and Lilaceae improved phosphorus nutrition in soils, yet Labiatae and Rosaceae impeded the improvement of phosphorus nutrition in soils under their canopies, which will be of more help to instruct vegetation restoration in the region and provide information for soil development. 展开更多
关键词 BIOAVAILABILITY FRACTION inorganic phosphorus VEGETATION soil development loess Plateau
下载PDF
Long Term Effects of Farming System on Soil Water Content and Dry Soil Layer in Deep Loess Profile of Loess Tableland in China 被引量:11
9
作者 CHENG Li-ping LIU Wen-zhao 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2014年第6期1382-1392,共11页
Soil water is strongly affected by land use/cover in the Loess Plateau in China. Water stored in thick loessal soils is one of the most important resources regulating vegetation growth. However, soil water in the deep... Soil water is strongly affected by land use/cover in the Loess Plateau in China. Water stored in thick loessal soils is one of the most important resources regulating vegetation growth. However, soil water in the deep loess proifle, which is critical for maintaining the function of the“soil water pool”is rarely studied because deep proifle soil samples are dififcult to collect. In this study, four experimental plots were established in 2005 to represent different farming systems on the Changwu Tableland:fallow land, fertilized cropland, unfertilized cropland, and continuous alfalfa. The soil water content in the 15-m-deep loess proifles was monitored continuously from 2007 to 2012 with the neutron probe technique. The results showed that temporal variations in soil water proifles differed among the four farming systems. Under fallow land, the soil water content increased gradually over time, ifrst in the surface layers and later in the deep soil layers. In contrast, the soil water content decreased gradually under continuous alfalfa. The distributions of soil water in deep soil layers under both fertilized and unfertilized cropland were relatively stable over time. Thus farming system signiifcantly affected soil water content. Seven years after the start of the experiment, the soil water contents in the 15-m-deep proifles averaged 23.4%under fallow land, 20.3%under fertilized cropland, 21.6%under unfertilized cropland, and 16.0%under continuous alfalfa. Compared to measurements at the start of the experiment, both fallow land and unfertilized cropland increased soil water storage in the 15-m loess proifles. In contrast, continuous alfalfa reduced soil water storage. Fertilized cropland has no signiifcant effect on soil water storage. These results suggest that deep soil water can be replenished under the fallow and unfertilized farming systems. Dry soil layers (i.e., those which have soil water content less than the stable ifeld water capacity) in the subsoil of the Changwu Tableland region can be classiifed as either temporary dry soil layers or persistent dry soil layers. Temporary dry soil layers, which typically form under annual crops, often disappear during wet years. Persistent dry soil layers generally develop under perennial vegetation. Even after removing the vegetation, persistent dry soil layers remain for several decades. This study provides information useful for the conservation and utilization of soil water resources in the Loess Tableland. 展开更多
关键词 farming system temporal variability soil water dried soil layer loess Plateau
下载PDF
Evaluation of soil erodibility factor(k)for loess derived landforms of Kechik watershed in Golestan Province,North of Iran 被引量:2
10
作者 Farshad KIANI Aboutaleb GHEZELSEFLO 《Journal of Mountain Science》 SCIE CSCD 2016年第11期2028-2035,共8页
The technique proposed by Wischmeier & Smith for estimating the soil erodibility factor is among the most important methods in this regard.Given the high amounts of silt and lime content in loess soils of eastern ... The technique proposed by Wischmeier & Smith for estimating the soil erodibility factor is among the most important methods in this regard.Given the high amounts of silt and lime content in loess soils of eastern parts of Golestan province in Iran,this study aims to evaluate the ability of Wischmeier & Smith index to estimate the soil erodibility of this region.Soil erodibility was first obtained by Wischmeier nomograph and then was compared with the actual values obtained by selecting six plots and then performing physical and chemical tests on these samples.Using the nomograph,Wischmeier index was calculated to be about.0.5-0.092 Mg h MJ-1 mm-1.The results showed that Wischmeier index was 182,4.11,6 and 0.35 times than actual value in field with half-hour rainfall,Fournier index,SWAT value with half-hour rainfall and SWAT value with Fournier index,respectively.Obtained results showed that erodibility estimated by Wischmeier & Smith index was higher than the actual measured value.Poor performance of this index in loess soils indicates the need for further research in this field. 展开更多
关键词 土壤 erodibility 黄土 Wischmeier 列线图表 伊朗
下载PDF
Effects of artificially cultivated biological soil crusts on soil nutrients and biological activities in the Loess Plateau 被引量:7
11
作者 YanMin ZHAO QingKe ZHU +4 位作者 Ping LI LeiLei ZHAO LuLu WANG XueLiang ZHENG Huan MA 《Journal of Arid Land》 SCIE CSCD 2014年第6期742-752,共11页
Biological soil crusts (BSCs) play an important role in the early succession of vegetation restoration in the Loess Plateau, China. To evaluate the effects of artificially cultivated BSCs on the soil surface micro-e... Biological soil crusts (BSCs) play an important role in the early succession of vegetation restoration in the Loess Plateau, China. To evaluate the effects of artificially cultivated BSCs on the soil surface micro-envir- onment, we obtained natural moss crusts and moss-lichen crusts from the Loess Plateau of Shaanxi province, and subsequently inoculated and cultivated on horizontal and sloping surfaces of loess soil in a greenhouse. The chemical and biological properties of the subsoil under cultivated BSCs were determined after 10 weeks of cul- tivation. The results indicated that BSCs coverage was more than 65% after 10 weeks of cultivation. Moss crust coverage reached 40% after 5 weeks of cultivation. Compared with the control, soil organic matter and available nitrogen contents in moss crust with the horizontal treatments increased by 100.87% and 48.23%, respectively; increased by 67.56% and 52.17% with the sloping treatments, respectively; they also increased in moss-lichen crust with horizontal and sloping treatments, but there was no significant difference. Available phosphorus in cultivated BSCs was reduced, soil pH was lower and cationic exchange capacity was higher in cultivated BSCs than in the control. Alkaline phosphatase, urease and invertase activities were increased in artificially cultivated BSCs, and alkaline phosphatase activity in all cultivated BSCs was obviously higher than that in the control. Numbers of soil bacteria, fungi and actinomycetes were increased in the formation process of cultivated BSCs. These results indicate that BSCs could be formed rapidly in short-term cultivation and improve the mi- cro-environment of soil surface, which provides a scientific reference for vegetation restoration and ecological reconstruction in the Loess Plateau. China. 展开更多
关键词 biological soil crusts soil nutrient enzyme activity soil microorganism loess Plateau
下载PDF
Micromorphology and Quality Attributes of the Loess Derived Soils Affected by Land Use Change:A Case Study in Ghapan Watershed,Northern Iran 被引量:1
12
作者 Farhad Khormali Somaye Shamsi 《Journal of Mountain Science》 SCIE CSCD 2009年第2期197-204,共8页
In order to study the effects of different land vegetative covers on soil quality attributes, a loess hill slope was selected in eastern Golestan Province, Ghapan watershed, Iran. Four profiles in four land uses, incl... In order to study the effects of different land vegetative covers on soil quality attributes, a loess hill slope was selected in eastern Golestan Province, Ghapan watershed, Iran. Four profiles in four land uses, including Quercus natural forest; Pinus artificial forest; Cupressus artificial forest and a cultivated land, were studied. Results showed that MWD was significantly different in the studied land uses, and it varied between 1.6 mm in Quercus natural forest and 0.31 mm in cultivated land use. The lowest CEC, microbial respiration rate and organic carbon were 28.4 cmol·kg-1, 177 μgCO2·g-1·day-1 and 1.32 % found in cultivated land use, respectively. The organic matter content in the forest areas was considerably higher than that of cultivated land use. The studies on soil profile development revealed that the natural forest soils were highly developed. The soils of the Quercus natural forest were classified as Calcic Haploxeralfs with a well developed argillic horizon unlike the cultivated soils which showed the minimum development and classified as Typic Xerorthents. The soils of the artificial forests had both mollic epipedons and were classified as Typic Calcixerolls with moderate profile development. Micromorphological studies revealed that argillic horizons had speckled and partly crystallitic b-fabric in the natural forest indicating the high landscape stability. In contrast, the crystallitic b-fabric of other land uses shows the absence of enough leaching of carbonate and the subsequent migration of clay particles indicating the unstable conditions and high soil erosion. Intense erosion of the surface horizons of cultivated land use has resulted in the outcropping of the subsurface carbonate rich horizons preventing soil development. 展开更多
关键词 土地利用变化 土壤质量 质量属性 伊朗 流域 耕地土壤 天然森林 土源
下载PDF
Soil erosion and management on the Loess Plateau 被引量:15
13
作者 CAI Qiang-guo (Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China) 《Journal of Geographical Sciences》 SCIE CSCD 2001年第1期53-70,共18页
The Loess Plateau is well known to the world for its intense soil erosion. The root cause for river sedimentation of Yellow River (Huanghe) and its resultant “hanging river” in certain section is soil and water loss... The Loess Plateau is well known to the world for its intense soil erosion. The root cause for river sedimentation of Yellow River (Huanghe) and its resultant “hanging river” in certain section is soil and water loss on the Loess Plateau. The Loess Plateau has a long cultivation history, hence population growth, vegetation degeneration and plugging constitute the chief reason for serious soil and water loss on Loess Plateau. This paper analyses several successful cases and failures in soil conservation, presents practical soil conservation technique and related benefit analysis, and discusses some effective methods adopted in China in soil erosion control, research directions and future perspectives on Loess Plateau. 展开更多
关键词 soil erosion control technique MANAGEMENT loess Plateau
下载PDF
Effects of Shrub on Runoff and Soil Loss at Loess Slopes Under Simulated Rainfall 被引量:5
14
作者 XIAO Peiqing YAO Wenyi +3 位作者 SHEN Zhenzhou YANG Chunxia LYU Xizhi JIAO Peng 《Chinese Geographical Science》 SCIE CSCD 2017年第4期589-599,共11页
Improved understanding of the effect of shrub cover on soil erosion process will provide valuable information for soil and water conservation programs.Laboratory rainfall simulations were conducted to determine the ef... Improved understanding of the effect of shrub cover on soil erosion process will provide valuable information for soil and water conservation programs.Laboratory rainfall simulations were conducted to determine the effects of shrubs on runoff and soil erosion and to ascertain the relationship between the rate of soil loss and the runoff hydrodynamic characteristics.In these simulations a 20° slope was subjected to rainfall intensities of 45,87,and 127 mm/h.The average runoff rates ranged from 0.51 to 1.26 mm/min for bare soil plots and 0.15 to 0.96 mm/min for shrub plots.Average soil loss rates varied from 44.19 to 114.61 g/(min·m^2) for bare soil plots and from 5.61 to 84.58 g/(min·m^2) for shrub plots.There was a positive correlation between runoff and soil loss for the bare soil plots,and soil loss increased with increased runoff for shrub plots only when rainfall intensity is 127 mm/h.Runoff and soil erosion processes were strongly influenced by soil surface conditions because of the formation of erosion pits and rills.The unit stream power was the optimal hydrodynamic parameter to characterize the soil erosion mechanisms.The soil loss rate increased linearly with the unit stream power on both shrub and bare soil plots.Critical unit stream power values were 0.004 m/s for bare soil plots and 0.017 m/s for shrub plots. 展开更多
关键词 土壤流失 坡面径流 模拟降雨 灌木 降雨条件 单位水流功率 土壤侵蚀过程 水动力学特性
下载PDF
Difference in Organic Carbon Contents and Distributions in Particle-size Fractions between Soil and Sediment on the Southern Loess Plateau, China 被引量:5
15
作者 LI Guang-lu PANG Xiao-ming 《Journal of Mountain Science》 SCIE CSCD 2014年第3期717-726,共10页
The purpose of this study was to assess the effect of long-term cultivation and water erosion on the soil organic carbon(OC) in particle-size fractions.The study site is located at Nihegou Watershed in the Southern Lo... The purpose of this study was to assess the effect of long-term cultivation and water erosion on the soil organic carbon(OC) in particle-size fractions.The study site is located at Nihegou Watershed in the Southern Loess Plateau, China. The soil at this site is loess with loose and silty structure, and contains macropores. The results showed that the OC concentrations in sediments and in the particle-size fractions of sediments were higher than those in soils and in the particle-size fractions of soils. The OC concentration was highest in the clay particles and was lowest in the sand particles. Clay particles possessed higher OC enrichment ability than silt and sand particles. The proportions of OC in the silt fractions of soil and sediment were the highest(mean value of 53.87% and 58.48%, respectively), and the total proportion of OC in the clay and silt fractions accounted for 96% and 98% of the total OC in the soil and sediment, respectively. The loss of OC was highest in silt particles, with an average value of 0.16Mg ha-1 y-1, and was lowest in the sand(0.003 Mg ha-1y-1). This result suggests that the fine particle-size fraction in the removed sediment may be an important indicator to assess soil OC losses. 展开更多
关键词 有机碳含量 黄土高原 颗粒大小 沉积物 土壤 中国 和分布 粒级
下载PDF
The effects of land use and its patterns on soil properties in a small catchment of the Loess Plateau 被引量:6
16
作者 WANGJun FUBo-jie 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2003年第2期263-266,共4页
Due to relatively strong human activities in the hilly area of Loess Plateau, the natural vegetation has been destroyed, and landscape pattern based on agricultural land matrix was land use mosaic composing of shrub l... Due to relatively strong human activities in the hilly area of Loess Plateau, the natural vegetation has been destroyed, and landscape pattern based on agricultural land matrix was land use mosaic composing of shrub land, grassland, woodland and orchard. This pattern has an important effect on soil moisture and soil nutrients. The Danangou catchment, a typical small catchment, was selected to study the effects of land use and its patterns on soil moisture and nutrients in this paper. The results are as follows: The comparisons of soil moisture among seven land uses for wet year and dry year were performed: (1) the average of soil moisture content for whole catchment was 12.11% in wet year, while it was 9.37% in dry year; (2) soil moisture among seven land uses was significantly different in dry year, but not in wet year; (3) from wet year to dry year, the profile type of soil moisture changed from decreasing type to fluctuation-type and from fluctuant type to increasing type; (4) the increasing trend in soil moisture from the top to foot of hillslope occurred in simple land use along slope, while complicated distribution of soil moisture was observed in multiple land uses along slope. The relationships between soil nutrients and land uses and landscape positions were analysed: (1) five nutrient contents of soil organic matter (SOM), total N (TN), available N (AN), total P (TP) and available P (AP) in hilly area were lower than that in other areas. SOM content was less than 1%, TN content less than 0.07%, and TP content between 0.05% and 0.06%; (2) SOM and TN contents in woodland, shrub land and grassland were significantly higher than that in fallow land and cropland, and higher level in soil fertility was found in crop-fruit intercropping land among croplands; (3) soil nutrient distribution and responses to landscape positions were variable depending on slope and the location of land use types. 展开更多
关键词 hilly area of loess Plateau land use pattern soil moisture soil nutrient
下载PDF
Diurnal and seasonal dynamics of soil respiration in a Platycladus orientalis forest stand on the semiarid Loess Plateau, China 被引量:4
17
作者 SHI Wei-yu ZHANG Jian-guo +2 位作者 YAN Mei-jie GUAN Jin-hong DU Sheng 《地球环境学报》 2012年第6期1144-1148,共5页
Forest ecosystems on China's Loess Plateau are receiving increasing attention because of their special importance in carbon fixation and conservation of soil and water in the region.Soil respiration was investigat... Forest ecosystems on China's Loess Plateau are receiving increasing attention because of their special importance in carbon fixation and conservation of soil and water in the region.Soil respiration was investigated in Platycladus orientalis forest stands of the region at diurnal and seasonal scales.The daily and seasonal average values of soil respiration were 2.53μmol·m^(-2)·s^(-1)and 3.78μmol·m^(-2)·s^(-1),respectively.On a diurnal and seasonal scale,the variations of soil respiration in the P.orientalis forest show a one-peak pattern.The diurnal dynamics of soil respiration were mainly driven by soil temperature.However,the relationship between soil respiration and soil temperature was not significant,mainly because of the hysteresis effect of soil respiration on soil temperature.Soil moisture plays another dominant role in the ecosystem carbon balance,but was not affected by soil temperature in P.orientalis forest on the semiarid Loess Plateau. 展开更多
关键词 loess Plateau Platycladus orientalis SEMIARID soil respiration
下载PDF
Soil hydraulic conductivity as affected by vegetation restoration age on the Loess Plateau,China 被引量:10
18
作者 REN Zongping ZHU Liangjun +1 位作者 WANG Bing CHENG Shengdong 《Journal of Arid Land》 SCIE CSCD 2016年第4期546-555,共10页
The Loess Plateau of China has experienced extensive vegetation restoration in the past several decades, which leads to great changes in soil properties such as soil bulk, porosity, and organic matter with the vegetat... The Loess Plateau of China has experienced extensive vegetation restoration in the past several decades, which leads to great changes in soil properties such as soil bulk, porosity, and organic matter with the vegetation restoration age. And these soil properties have great effect on the soil infiltration and soil hydraulic conductivity. However, the potential changes in soil hydraulic conductivity caused by vegetation restoration age have not been well understood. This study was conducted to investigate the changes in soil hydraulic conductivity under five grasslands with different vegetation restoration ages (3, 10, 18, 28 and 37 years) compared to a slope farmland, and further to identify the factors responsible for these changes on the Loess Plateau of China. At each site, accumulative infiltration amount and soil hydraulic conductivity were determined using a disc permeameter with a water supply pressure of -20 mm. Soil properties were measured for analyzing their potential factors influencing soil hydraulic conductivity. The results showed that the soil bulk had no significant changes over the initial 20 years of restoration (P〉0.05); the total porosity, capillary porosity and field capacity decreased significantly in the grass land with 28 and 37 restoration ages compared to the slope farmland; accumulative infiltration amount and soil hydraulic conductivity were significantly enhanced after 18 years of vegetation restoration. However, accumulative infiltration amount and soil hydraulic conductivity fluctuated over the initial 10 years of restoration. The increase in soil hydraulic conductivity with vegetation restoration was closely related to the changes in soil texture and structure. Soil sand and clay contents were the most influential factors on soil hydraulic conductivity, followed by bulk density, soil porosity, root density and crust thickness. The Pearson correlation coefficients indicated that the soil hydraulic conductivity was affected by multiply factors. These results are helpful to understand the changes in hydrological and erosion processes response to vegetation succession on the Loess Plateau. 展开更多
关键词 disc permeameter effect factors soil infiltration vegetation restoration loess Plateau
下载PDF
Revegetation with artificial plants improves topsoil hydrological properties but intensifies deep-soil drying in northern Loess Plateau,China 被引量:8
19
作者 ZHANG Qingyin JIA Xiaoxu +1 位作者 ZHAO Chunlei SHAO Ming'an 《Journal of Arid Land》 SCIE CSCD 2018年第3期335-346,共12页
Knowledge about the effects of vegetation types on soil properties and on water dynamics in the soil profile is critical for revegetation strategies in water-scarce regions, especially the choice of vegetation type an... Knowledge about the effects of vegetation types on soil properties and on water dynamics in the soil profile is critical for revegetation strategies in water-scarce regions, especially the choice of vegetation type and human management measures. We focused on the analysis of the effects of vegetation type on soil hydrological properties and soil moisture variation in the 0–400 cm soil layer based on a long-term(2004―2016) experimental data in the northern Loess Plateau region, China. Soil bulk density(BD), saturated soil hydraulic conductivity(Ks), field capacity(FC) and soil organic carbon(SOC) in 2016, as well as the volumetric soil moisture content during 2004–2016, were measured in four vegetation types, i.e., shrubland(korshinsk peashrub), artificial grassland(alfalfa), fallow land and cropland(millet or potato). Compared with cropland, revegetation with peashrub and alfalfa significantly decreased BD and increased Ks, FC, and SOC in the 0–40 cm soil layer, and fallow land significantly increased FC and SOC in the 0–10 cm soil layer. Soil water storage(SWS) significantly declined in shrubland and grassland in the 40–400 cm soil layer, causing severe soil drought in the deep soil layers. The study suggested that converting cropland to grassland(alfalfa) and shrubland(peashrub) improved soil-hydrological properties, but worsened water conditions in the deep soil profile. However, natural restoration did not intensify deep-soil drying. The results imply that natural restoration could be better than revegetation with peashrub and alfalfa in terms of good soil hydrological processes in the semi-arid Loess Plateau region. 展开更多
关键词 soil drying soil hydrological property soil moisture vegetation restoration loess Plateau
下载PDF
ECO-ENVIRONMENT CHANGE AND SOIL EROSION PROCESS IN THE RECLAIMED FORESTLAND OF THE LOESS PLATEAU 被引量:1
20
作者 ZHAXiao-chun TANGKe-li 《Chinese Geographical Science》 SCIE CSCD 2003年第3期232-237,共6页
Serious soil erosion has made the eco-environment fragile in the Loess Plateau. Based on the 10-year data observed from 1989 to 1998 in the Ziwuling Survey Station in loess hilly region, the eco-environment change and... Serious soil erosion has made the eco-environment fragile in the Loess Plateau. Based on the 10-year data observed from 1989 to 1998 in the Ziwuling Survey Station in loess hilly region, the eco-environment change and soil erosion process in reclaimed forestland were studied in this paper. The results showed that the intensity of man-made soil erosion caused by forestland reclamation was 1000 times more than that of the natural erosion. From the analysis of soil physical and mechanical properties, in the 10th year after forestland was reclaimed, the clay content and physical clay content decreased 2.74 percentage point and 3.01 percentage point respectively, the >0.25mm waterstable aggregate content decreased 31.59 percentage point, the soil bulk density increased and soil shear strength decreased, all of which were easier to cause soil erosion. The correlation analysis showed that >0.25mm waterstable aggregate content was the key factor affecting soil erosion, and the secondary factors were soil coarse grain and soil shear strength. The relation between the >0.25mm waterstable aggregate content, the soil sheer strength and the soil erosion intensity were analyzed, which showed that the first year and the seventh erosion year were the turn years of the soil erosion intensity after the forestland was reclaimed, revealed that the change of eco-environment was the main cause to accelerate soil erosion, and the worse environment caused soil erosion to be serious rapidly. 展开更多
关键词 土壤侵蚀 黄土高原 再造林 生态环境保护 水土保持
下载PDF
上一页 1 2 196 下一页 到第
使用帮助 返回顶部